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ABSTRACT 

To enable maximizing on-time processing throughput 

across multiple internally pipelined/parallelized 

applications on dynamically shared manycore 

processors by eliminating system software overhead, 

a hardware automated implementation of the parallel 

execution system functions is presented. In the 

presented implementation scenario, the manycore 

processor hardware provides, besides the processing 

cores, IO and memories, the system functions of 

monitoring the applications’ processing loads, 

periodically (e.g. at microsecond intervals) allocating 

processing resources (cores) among the applications 

based on their processing load variations and 

contractual entitlements, prioritizing application task 

instances for execution, mapping selected task 

instances for execution on their assigned cores, and 

accordingly dynamically configuring the inter-task 

communications, IO and memory access subsystems 

(and on programmable hardware, the core slot types). 

The result pursued is a realtime application load and 

type adaptive manycore processor architecture, 

enabling scalable, secure, high-performance and 

resource-efficient, dynamic parallel cloud computing. 

Categories and Subject Descriptors 

C.2.4 [Cloud computing] 

General Terms 

Algorithms, Management, Performance, Design, 

Economics, Experimentation, Security, 

Standardization, Theory. 

Keywords 

Dynamic parallel execution, application load adaptive 

processing, hardware-automation of operating system 

functions. 

 

1. INTRODUCTION 
Traditionally, advancements in computing 

technologies have fallen into two categories. First, in 

the field conventionally referred to as high 

performance computing, the main objective has been 

maximizing the processing speed of one given 

computationally intensive program running on a 

dedicated hardware comprising a large number of 

parallel processing resources. Second, in the field 

conventionally referred to as utility or cloud 

computing, the main objective has been to most 

efficiently share a given pool of computing hardware 

resources among a large number of user application 

programs. Thus, in effect, one branch of computing 

technology advancement effort has been seeking to 

effectively use a large number of parallel processors 

to accelerate execution of a single application 

program, while another branch of the effort has been 

seeking to efficiently share a single pool of 

computing capacity among a large number of user 

applications to improve the capacity utilization. 

However, there have not been major synergies 

between these two efforts; often, pursuing any one of 

these traditional objectives rather happens at the 

expense of the other. For instance, dedicating an 

entire parallel processor based (super) computer per 

individual application causes severely sub-optimal 

computing resource utilization, as much of the 

capacity would be idling much of the time. On the 

other hand, seeking to improve utilization of 

computing systems by sharing their processing 

capacity among a number of user applications using 

conventional technologies will cause non-

deterministic, compromised performance for the 

individual applications, along with security concerns. 

As such, the overall cost-efficiency of computing is 

not improving as much as improvements toward 

either of the two traditional objectives would imply: 

traditionally, single application performance 

maximization comes at the expense of system 

utilization efficiency, while overall system efficiency 

maximization comes at the expense of individual 

application performance. 
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There thus exists a need for a new parallel computing 

architecture, which, at the same time, enables 

increasing the speed of executing application 

programs, including through execution of a given 

application in parallel across multiple processor 

cores, as well as improving the utilization of the 

available computing resources, thereby maximizing 

the collective application processing on-time 

throughput for a given cost budget. Moreover, even 

outside traditional high performance computing, the 

application performance requirements will 

increasingly be exceeding the processing throughput 

achievable from a single CPU core, e.g. due to the 

practical limits being reached on the CPU clock rates. 

This creates an emerging requirement for intra-

application parallel processing (at ever finer grades) 

also for mainstream programs. Notably, these 

internally parallelized enterprise and web applications 

will be largely deployed on dynamically shared cloud 

computing infrastructure. Accordingly, the emerging 

form of mainstream computing calls for technology 

innovation supporting executing large number of 

internally parallelized applications on dynamically 

shared parallel processing resource pools. 

Generally, dynamically optimizing resource usage in 

a large capacity parallel processing system among a 

large number of applications and their instances and 

tasks, in pursuing both predictable, high performance 

for each individual application as well as efficient 

system resource utilization, does present a complex 

problem, resolving which would consume plenty of 

the system’s resources if handled in software. It is not 

trivial to answer the question: To which application 

task instance should any given processing resource 

be assigned at any given time, to achieve optimal 

system-wide application processing throughput? 

2. MULTI-STAGE PARALLEL 

PROCESSING ARCHITECTURE 

2.1 Overview 
To address the above challenges, this paper presents 

an architecture for extensible, application program 

load and type adaptive, multi-stage manycore 

processing systems (Fig. 1). The presented 

architecture takes the following approach to enable 

scaling the dynamic resource optimization for 

increasing numbers (and types) of pooled processing 

resources and application programs (apps), their 

instances (insts) and tasks sharing the pooled 

resources: 

1) The processing resources and app processing is 

partitioned into (manycore processor based) 

processing stages, which, per any given app, can 

be arranged to support various combinations of 

pipelined and parallelized processing. This brings 

the following benefits:  

a. The system has to support, per each processing 

stage, only one task per each of the apps 

dynamically sharing the system. At each 

processing stage though, there will be a 

dynamically optimized number of active insts 

of the local tasks of each app. The resource 

management for each stage is thus simpler than 

it would be for the full system, where there are 

multiple tasks per each app. 

b. The resource management is done 

independently for each processing stage, 

which, besides being simpler due to there being 

just one task per app, limits the scope of the 

function, adding to the scalability of the 

architecture. Note that the dynamic resource 

optimization at each processing stage of the 

system, while done independently, is adaptive 

to the apps’ processing load variations (incl. 

the processing input volumes received by any 

given stage from the other stages/external 

network inputs), so that full system scope 

resource usage optimization is achieved by the 

per-stage distributed dynamic resource 

management. 

2) The processing core resource management at each 

manycore based processing stage is further 

partitioned as follows: 

a. First, the allocation of the cores (of the local 

manycore processor) among the apps (i.e. their 

local tasks at that stage) is optimized 

periodically, based (in part) on the input 

processing load variations among the apps. 

b. Based on such core allocations, highest priority 

insts of the local app tasks are assigned for 

processing on a number of cores allocated to 

each given app. To minimize task switching 

overhead, continuing app-task insts are kept at 

their existing cores, and activating app-task 

insts are mapped to cores occupied by de-

activating app-task insts -- on processors 

supporting multiple (reconfigurable) core 

types, so that the core types demanded by 

incoming app-tasks match, to the extent 

possible, the core type of their assigned core 

slots occupied by the outgoing app-tasks. 
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By partitioning the system-wide dynamic resource 

management functionality per above, the individual 

functions of resource management for dynamically 

shared manycore arrays become feasible (e.g. in terms 

complexities of data structures needed) for direct 

hardware (e.g. FPGA) implementation. The all-

hardware implementation of such system functions 

further adds to the scalability of the architecture (per 

Figs. 1-5) via system software overhead reduction. 

Since the hardware automated system functions do 

not consume any of the system processor capacity no 

matter how frequently the capacity is reallocated, and 

since the hardware algorithms run in just a few clock 

cycles, as well as since hardware automated task 

switching for the processor cores is non-visible to 

software, this architecture also enables re-optimizing 

the system resource assignment as frequently as 

needed to accommodate the apps’ processing load 

variations. The main structures and elements of the 

architecture, and their operation, are described in the 

following. 

2.2 Multi-stage Pipelined/Parallel Processing 
Fig. 2 below illustrates the multi-stage parallel 

processing architecture. 

External

input ports 

External

output ports 

Packet

switch

(PS)

PS

ports #0 

App. load 

adaptive

manycore

processing

system

(worker 

stage #0)

PS

ports #1 
(worker 

stage # 2)

PS

ports #T-1 

(worker 

stage # T-1)

App. load 

adaptive

manycore

processing

system

(entry 

stage)

App. load 

adaptive

manycore

processing

system

(exit 

stage)

PS input

ports #T

PS output

ports #T

PS ports #T

.

.

.

 

Figure 1. Multi-stage manycore processor system architecture. 

General operation of the application load adaptive, 

multi-stage parallel data processing system per FIG 

1., focusing on the main I/O data flows, is as follows: 

The system provides data processing services to be 

used by external parties (e.g. by client apps) over 

networks. The system receives data packets from its 

users through its network input ports, and transmits 

the processing results to the relevant parties through 

its network output ports. Naturally the network ports 

of the system of Fig. 1 can be used also for 

connecting with other resources and services (e.g. 

storage, data bases etc.) as/if necessary to produce the 

requested processing results. The app tasks executing 

on the entry stage manycore processor are typically of 

‘master’ type for parallelized/pipelined apps, i.e., they 

manage and distribute the processing workloads for 

‘worker’ type tasks running on the worker stage 

manycore processing systems (note that the processor 

system hardware is similar for all instances of the 

processing system). The insts of master tasks 

typically do pre-processing (e.g. message/request 

classification, data organization) and workflow 

management based on input packets, and then 

typically involve appropriate worker tasks at their 

worker stage processors to perform the data 

processing called for by the given input packet(s), 

potentially in the context of and in connection with 

related input and/or stored data elements. (The 

processors can have access to system memories 

through interfaces additional to the IO ports shown in 
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the Figs.) Accordingly, the master tasks typically pass 

on the received data units (using direct connection 

techniques to allow most of the data volumes being 

transferred to bypass the actual processor cores) 

through the inter-stage packet-switch (PS) to the 

worker stage processors, with the destination app-task 

inst identified for each data unit.  

2.3 Inter-Stage Data Flow and Processing 

Load Balancing 
The any-to-any connectivity among the app-tasks of 

all the processing stages provided by the PS (Fig.1) 

enables organizing the worker tasks (located at the 

array of worker stage processors) flexibly to suit the 

individual needs (e.g. task inter-dependencies) of any 

given app on the system: the worker tasks can be 

arranged to conduct the work flow for the given app 

using any desired combinations of parallel and 

pipelined processing. E.g., it is possible to have 

copies of a particular (data parallelizable) task of a 

given app located on any number of the worker stages 

in the architecture per Fig. 1, to provide a desired 

number of parallel copies of a given app task. The set 

of apps configured to run on the system have their 

tasks identified by (intra-app) IDs according to their 

descending order of relative workload levels. The 

sum of the intra-app task IDs (with each ID 

representing the workload ranking of its task within 

its app) of the app-tasks hosted at any given 

processing system is equalized by appropriately 

locating the tasks of differing ID#s, i.e. of differing 

workload levels, across the apps for each processing 

stage, to achieve optimal overall load balancing. For 

instance, in case of four worker stages, if the system 

is shared among four apps and each of that set of apps 

has four tasks, for each app of that set, the busiest 

task (i.e. the worker task most often called for or 

otherwise causing the heaviest processing load among 

tasks of the app) is given task ID#0, the second 

busiest task ID#1, the third busiest ID#2, and the 

fourth ID#3. To balance the processing loads across 

the apps among the worker stages of the system, the 

worker stage #t gets task ID#t+m (rolling over at 3 to 

0) of the app ID #m (t=0,1,…T-1; m=0,1,…M-1). In 

this example scenario of four apps, four worker tasks 

per app as well as four worker stages, the above 

scheme causes the task IDs of the set of apps to be 

placed at the processing stages per Tbl. 1 below: 

App ID# m (to 

right) 
0 1 2 3 

Worker stage# t 

(below) 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

Table 1. 

As seen in the example of Tbl. 1, the sum of the task 

ID#s (with each task ID# representing the workload 

ranking of its task within its app) is the same for any 

row i.e. for each worker stage. Applying this load 

balancing scheme for differing numbers of processing 

stages/tasks and apps is straightforward based on this 

example, so that the overall task processing load is to 

be, as much as possible, equal across all worker-stage 

processors of the system. Advantages of such 

schemes include optimal utilization efficiency of the 

processing resources and minimizing the possibility 

or effects of any of the worker-stage processors 

forming system-wide performance bottlenecks. 

2.4 Application-Load Adaptive Manycore 

Processor Architecture 
From here, we continue by exploring the internal 

structure and operation of a given processing stage, a 

high level functional block diagram of which is 

shown in Fig. 2 below. 
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Figure 2. Top-level diagram for any of the processing stages in the multi-stage parallel processing system 

in Fig. 1. 

Per Fig. 2, any of the processing stages of the system 

(Fig. 1) has, besides the manycore processor system 

(Figs. 3-5), an RX logic subsystem, which connects 

input data packets from any of the input ports to any 

of the processing cores of the processing stage, 

according to at which core the indicated destination 

app-inst of any given packet may be executing at any 

given time. Moreover, the monitoring of the buffered 

input data load levels per each destination app-inst at 

the RX logic subsystem enables optimizing the 

allocation of processing core capacity of the local 

manycore processor among the app tasks hosted on 

that processing stage. Internal elements and operation 

of the application load adaptive manycore processor 

system are illustrated in Fig. 3. Since there is one task 

per app per processing stage (though there can be 

multiple insts of any app-task at its local processing 

stage), the term app-inst in the context of a single 

processing stage means an instance of an app-task 

hosted at the processing stage under study. 
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Figure 3. Application load adaptive manycore processor for the processing stage per Fig. 2 (within the 

multi-stage parallel processing system per Fig. 1). 

Fig. 3 provides a block diagram for the manycore 

processor system dynamically shared among insts of 

the locally hosted app-tasks, with capabilities for 

application processing load adaptive allocation of the 

cores among the apps, as well as for dynamically 

reconfigured IO and memory access by the app-task 

insts. Any of the cores of a processor per Fig. 3 can 

comprise any types of processing hardware resources, 

e.g. central processing units (CPUs), graphics 

processing units (GPUs), digital signal processors 

(DSPs) or application specific processors (ASPs) etc., 

and in programmable logic (FPGA) implementation, 

the core type for any core slot is furthermore 

reconfigurable per expressed demands of its assigned 

app-task.  

App specific logic modules at the RX module (Fig. 2) 

write their associated apps’ capacity demand 

indicators, core-demand-figures (CDFs), to the 

controller of the local manycore processor. The CDFs 

express how many cores their associated app is 

presently able to utilize for its ready to execute insts. 

Each app’s capacity demand expressions for the 

controller further include a list of its ready insts in an 

execution priority order. Criteria for prioritizing app-

insts for execution includes whether a given inst has 

available to it such input data and fast-access memory 

contents that enable it to execute at the given time.  

The hardware logic based controller module within 

the processor system, through a periodic process, 

allocates and assigns the cores of the processor 

among the set of apps and their insts (in part) based 

on the CDFs of the apps. This app-inst to core 

assignment process is exercised periodically, at 

intervals such as once per a defined number (e.g. 

1024) of processing core clock or instruction cycles. 

Fig. 4 below provides a data flow diagram for the 

hardware implemented controller, which periodically, 

e.g. once per microsecond, selects app-insts for 

execution, and places each selected-to-execute app-

inst to one of the cores of the local manycore 

processor. As shown in Figs. 2 and 3, the app-inst to 

core mapping info also directs muxing of input data 

from the RX buffers of an appropriate app-inst to 

each core of the array, as well as muxing of the read 

control signals from the core array to the RX buffers 

of the app-inst that is assigned for any given core at 

any given time.  
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Figure 4. App-inst to core mapping process for the manycore processor per Fig. 3. 

Fig. 4 presents major phases of the app-inst to core 

mapping process, used for maximizing the value-add 

of the app processing throughput of the manycore 

fabric shared among a number of apps. This process, 

periodically selecting and mapping the to-be-

executing insts of the set of app-tasks to the array of 

processing cores of the local processor, involves the 

following steps: 

(1) allocating the array of cores among the set of apps, 

based on CDFs and contractual entitlements of the 

apps, to produce for each app a number of cores 

allocated to it (between the current and the next 

run of the process); and 

(2) based at least in part on the allocating, for each 

given app that was allocated one or more cores:  

(a) selecting, according to the inst priority list of 

the given app, the highest priority insts of the 

app for execution corresponding to the number 

of cores allocated to the given app, and 

(b) mapping each selected app-inst to one of the 

available cores of the array, to produce,  

i) per each core of the array, an identification 

of the app-inst that the given core was 

assigned to, and 

ii) per each app-inst selected for execution on 

the fabric, an identification of its assigned 

core. 

The periodically produced and updated outputs of the 

controller process are used for periodically re-

configuring connectivity through the RX subsystem 

(Fig. 2) as well as the fabric memory access 

subsystem (Fig. 5). 

2.5 Fabric Memory Access Subsystem for 

Dynamically Allocated Manycore Processor 
Fig. 5 and related specifications below, along with the 

reference [1] (in particular its figures 8-10) and [3] 

describe the manycore processor on-chip memory 

access subsystem providing non-blocking processing 

memory access (incl. for program instructions and 

interim processing results) between the app-insts 

dynamically assigned to cores of the array and the 

app-inst specific memories at the memory array of the 

core fabric. The capabilities per Fig. 5 provide logic, 

wiring, memory etc. system resource efficient support 

for executing any app-inst at any core within the 

processor at any given time (as controlled by the 

controller that periodically optimizes the allocation 

and assignment of cores of the array among the 

locally hosted app-insts), while keeping each given 

app-inst transparently connected to its own 

(instruction and interim data containing) memory 

block at memory array. 
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Figure 5. Dynamically reconfigured access by app-insts dynamically assigned for execution at the core 

array to app-inst specific memory blocks within the core fabric. 

Per Fig. 5, to direct write and read control access 

from the array of cores to the array of app-inst 

specific memories, the controller identifies, for app-

inst specific muxes at the cross-connect (XC) 

between the core array and memory array, the 

presently active source core (if any) for write and 

read control access to each given app-inst specific 

segment within the fabric memory array. Similarly, to 

direct read access by the array of cores to the array of 

app-inst specific memories, the controller identifies, 

for core specific muxes at the XC, the memory 

segment of the app-inst presently assigned for each 

given core of the array. Based on the control by the 

controller for a given core indicating that it will be 

subject to an app-inst switchover, the currently 

executing app-inst is made to stop executing and its 

processing state from the core is backed up to the 

segment of that exiting app-inst at the memory array, 

while the processing state of the next app-inst 

assigned to execute on the given core is retrieved to 

the core from the memory array. Cores not indicated 

by controller as being subject to app-inst switchover 

continue their processing uninterruptedly through the 

core allocation period transitions.  

Note that applying of updated processing core ID# 

configurations for the app-inst specific mux:s at the 

XC and app-inst ID# configurations for the core 

specific mux:s of the XC (Fig. 5) as well as of the RX 

logic (Fig. 2) can be safely and efficiently done by the 

hardware logic without software involvement, since 

none of the app-insts needs to know whether or at 

which core itself or any other app-inst is executing 

within the system at any given time. Instead of relying 

on knowledge of the their respective previous, current 

(if any at a given time) or future execution cores by 

either the application or any system software, the 

architecture enables flexibly running any insts of any 

app-tasks at any core of their local processing stages. 

2.6 Specifics of the Application Instance to 

Core Assignment Process  

2.6.1 Hardware automation of dynamic resource 

management 

To enable rapidly re-optimizing the allocation and 

assignment of the system processing core capacity 

among the insts and tasks of the apps sharing the 

processing system per Fig. 1 according to the realtime 

processing load variations among the app-task-insts, 

the dynamic resource management processes are 

implemented by hardware logic in the manycore 

processor controller modules per Fig. 4. Similar 

processes are run (independently) for each of the 

processing stages of a given multi-stage manycore 

processor system per Fig. 1. The application 
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processing load adaptive, dynamic core assignment 

process per Fig. 4 comprises algorithms for core 

allocation, app-inst selection and mapping, as detailed 

in the following. 

2.6.2 Algorithm for allocating the cores among the 

applications  

Objectives for the core allocation algorithm include 

maximizing the processor core utilization (i.e., 

generally minimizing, and so long as there are ready 

app-insts, eliminating, core idling), while ensuring 

that each app gets at least up to its entitled (e.g. a 

contract based minimum) share of the processor core 

capacity whenever it has processing load to utilize 

such amount of cores. Each app sharing a given 

manycore processor (Fig. 3) is specified its entitled 

quota of the cores, at least up to which number of 

cores it is to be allocated whenever it is able to 

execute on such number of cores in parallel. 

Naturally, the sum of the apps' core entitlements 

(CEs) is not to exceed the total number of core slots 

in the given processor. Each app on the processor gets 

from each run of the core allocation algorithm: 

(1) at least the lesser of its (a) CE and (b) core 

demand figure (CDF) worth of the cores; plus 

(2) after condition (1) is met for all apps sharing the 

processor, as many additional cores to match its 

CDF as is possible while maintaining fairness 

among apps whose CDF is not fully met; plus  

(3) the app's fair share of any cores remaining 

unallocated after conditions (1) and (2) are met 

for all the apps. 

This algorithm allocating the cores to apps runs as 

follows: 

(i) First, any CDFs by all apps up to their CE of the 

cores within the array are met. E.g., if a given app 

#P had its CDF worth zero cores and entitlement 

for four cores, it will be allocated zero cores by 

this step (i). As another example, if a given app 

#Q had its CDF worth five cores and entitlement 

for one core, it will be allocated one core by this 

stage of the algorithm. However, to ensure that 

each app-task will be able at least to communicate 

at some defined minimum frequency, the step (i) 

of the algorithm allocates for each app, regardless 

of the CDFs, at least one core once in a specified 

number (e.g. sixteen) of the core allocation 

periods. 

(ii) Following step (i), any processing cores remaining 

unallocated are allocated, one core per app at a 

time, among the apps whose CDF had not been 

met by the amounts of cores so far allocated to 

them by preceding iterations of this step (ii) within 

the given run of the algorithm. For instance, if 

after step (i) there remained eight unallocated 

cores and the sum of unmet portions of the app 

CDFs was six cores, the app #Q, based on the 

results of step (i) per above, will be allocated four 

more cores by this step (ii) to match its CDF. 

(iii) Following step (ii), any processing cores still 

remaining unallocated are allocated among the 

apps evenly, one core per app at time, until all the 

cores of the array are allocated among the set of 

apps. Continuing the example case from steps (i) 

and (ii) above, this step (iii) will allocate the 

remaining two cores to certain two of the apps 

(one for each). Apps with zero existing allocated 

cores, e.g. app #P from step (i), are prioritized in 

allocating the remaining cores by this step (iii). 

Moreover, the iterations of steps (ii) and (iii) per 

above are started from a revolving app ID# within the 

set, so that the app ID# to be served first by these 

iterations is incremented by one (and returning to 0 

after reaching the highest app ID#) for each 

successive run of the algorithm. 

Accordingly, all cores of the array are allocated on 

each run of the above algorithm according to apps’ 

processing load variations while honoring their 

contractual entitlements. I.e., the allocating of the 

array of cores by the algorithm is done in order to 

minimize the greatest amount of unmet demands for 

cores (i.e. greatest difference between the CDF and 

allocated number of cores for any given app) among 

the set of apps, while ensuring that any given app gets 

its CDF at least within its CE met on each successive 

run of the algorithm. 

2.6.3 Algorithm for assigning app-insts for the 

cores 

Following the allocation of the array of cores among 

the apps, for each app on the processor that was 

allocated one or more cores by the latest run of the 

core allocation algorithm, the individual ready-to-

execute app-insts are selected and mapped to the 

number of cores allocated to the given app. One of 

the selected app-insts is assigned per one core by each 

run of this algorithm. 

The app-inst to core assignment algorithm for each 

given app begins by keeping any continuing app-insts, 

i.e., app-insts selected to run on the core array both on 

the present and the next core allocation period, 
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mapped to their current cores. After that rule is met, 

any newly selected insts for the given app are mapped 

to available cores. Assuming that a given app was 

allocated k (a positive integer) cores beyond those 

used by its continuing app-insts, k highest priority 

not-yet-mapped app-insts of the app are chosen to be 

mapped to the remaining available cores allocated to 

the given app, starting from the insts that are ready-

to-execute. 

When the app-inst to core mapping module of the 

controller (Fig. 4) gets an updated list of selected 

insts for the apps (following a change in either or 

both of core to app allocations or app-inst priority 

lists of one or more apps), it identifies from them the 

following: 

I. The set of activating, to-be-mapped, app-insts, i.e., 

selected app-insts that were not mapped to any 

core by the previous run of the placement 

algorithm; 

II. The set of deactivating app-insts, i.e., app-insts 

that were included in the previous, but not in the 

latest, selected app-inst lists; and 

III. The set of available cores, i.e., cores which in the 

latest assignment table were assigned to the set of 

deactivating app-insts (set II above). 

The sets I and II can be obtained as the incoming and 

outgoing app-insts for each of the cores for which the 

two are different. The app-inst to core assignment 

algorithm uses the info from the above sets to map the 

active app-insts to cores of the array so as to keep the 

continuing app-insts executing on their present cores, 

thus maximizing the utilization of the core array for 

user app processing, and by mapping the individual 

app-insts within the set I of activating app-insts for 

processing at the set III of available cores (according 

to their increasing app-inst and core IDs). 

Moreover, regarding placement of activating app-

insts (set I as discussed above) on processors with 

reconfigurable core slots, the assignment algorithm 

seeks to minimize the amount of core slots for which 

the activating app-inst demands a different execution 

core type than the deactivating app-inst did. I.e., the 

app-inst to core assignment algorithm will, to the 

extent possible, place activating app-insts to such 

core slots (within the core array of the local 

processor) where the deactivating app-inst had the 

same execution core type. E.g., activating app-inst 

demanding the DSP type execution core will be 

placed to the core slots where the deactivating app-

insts also had run on DSP type cores. This sub-step in 

placing the activating app-insts to their target core 

slots uses as one of its inputs the new and preceding 

versions of the core slot ID indexed active app-inst ID 

and core type arrays, to allow matching the activating 

app-insts and the available core slots according to the 

core type, in order to minimize the need for core slot 

reconfigurations. For details on the core slot dynamic 

reconfiguration, please see [2]. 

3. CONCLUSIONS 
Optimizing dynamic resource allocation on parallel 

processing resource pools shared among a number of 

internally parallelized and/or pipelined applications is 

a complex challenge, particularly when pursuing 

predictable, high performance (on-time processing 

throughput) for each of the individual applications as 

well as system-wide cost-efficiency, including in 

terms of efficient resource usage. Moreover, the 

resource allocation is merely a starting point for the 

overall challenge of orchestrating the execution of 

multiple concurrent applications on a dynamically 

shared parallel processing hardware: in addition, 

there needs to be a solution for handling the dynamic 

parallel execution routines, such as appropriately 

connecting the inter-task communications among the 

tasks of the application instances, and keeping each 

executing application task instance connected to its 

own processing context, while such application task 

instances are dynamically scheduled and placed on 

the shared pool of processing cores.  

Conventional computing paradigms have relied on 

system software for handling the dynamic resource 

management etc. parallel execution routines. 

However, by considering the data volumes and 

processing intensiveness of handling the functions per 

above in software when trying to scale up the number 

of pooled processing resources as well as the number 

of applications and their tasks sharing such resource 

pools, and while trying to increase the frequency of 

resource allocation optimization, it becomes clear that 

the system software would eventually begin 

consuming a disproportionately high amount of the 

processing capacity of the given pool, to the degree 

that plain scaling of conventional architectures will 

lead not only to reducing resource utilization 

efficiency, but eventually also to decreasing system-

wide application on-time processing throughput: after 

some point, the incremental processing resources, 

applications and tasks would begin to increase the 

overhead rate per a processing core so severely that 

the incremental scaling units would begin to reduce 
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the app throughput of all the cores in the given pool 

by a factor greater than they would increase the 

system-wide app processing throughput capacity. 

The presented architecture is designed to provide 

hardware logic based approach to the above 

scalability challenge being faced when seeking to 

improve both the individual application on-time 

processing throughput as well as the system-wide 

cost-efficiency and scalability of high volume, multi-

user (e.g. cloud) computing. To the description 

herein, the reference [4] adds descriptions of (i) 

billing methods with incentive system for maximizing 

the amount of processing resources available to meet 

processing load demand peaks of the user 

applications sharing the given system, (ii) a memory 

access system that both seeks to keep the on-chip fast-

access memory contents optimal w.r.t. to the 

presently active application-task instances’ needs as 

well as uses the readiness of app-task insts fast-access 

memory contents as a factor in optimally scheduling 

such insts for execution, (iii) inter-application 

performance isolation for inter-task communications, 

and (iv) hardware logic based load balancers for a 

cluster of multi-stage manycore processing systems 

per this paper. 
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