
© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 1 of 11

Hardware Automation of Scheduler, Placer, Inter-Task

Communications and IO System Functions for Manycore

Processors Dynamically Shared among Multiple

Applications
 Mark Sandstrom

ThroughPuter, Inc.
mark@throughputer.com

ABSTRACT

To enable maximizing on-time processing throughput

across multiple internally pipelined/parallelized

applications on dynamically shared manycore

processors by eliminating system software overhead,

a hardware automated implementation of the parallel

execution system functions is presented. In the

presented implementation scenario, the manycore

processor hardware provides, besides the processing

cores, IO and memories, the system functions of

monitoring the applications’ processing loads,

periodically (e.g. at microsecond intervals) allocating

processing resources (cores) among the applications

based on their processing load variations and

contractual entitlements, prioritizing application task

instances for execution, mapping selected task

instances for execution on their assigned cores, and

accordingly dynamically configuring the inter-task

communications, IO and memory access subsystems

(and on programmable hardware, the core slot types).

The result pursued is a realtime application load and

type adaptive manycore processor architecture,

enabling scalable, secure, high-performance and

resource-efficient, dynamic parallel cloud computing.

Categories and Subject Descriptors

C.2.4 [Cloud computing]

General Terms

Algorithms, Management, Performance, Design,

Economics, Experimentation, Security,

Standardization, Theory.

Keywords

Dynamic parallel execution, application load adaptive

processing, hardware-automation of operating system

functions.

1. INTRODUCTION
Traditionally, advancements in computing

technologies have fallen into two categories. First, in

the field conventionally referred to as high

performance computing, the main objective has been

maximizing the processing speed of one given

computationally intensive program running on a

dedicated hardware comprising a large number of

parallel processing resources. Second, in the field

conventionally referred to as utility or cloud

computing, the main objective has been to most

efficiently share a given pool of computing hardware

resources among a large number of user application

programs. Thus, in effect, one branch of computing

technology advancement effort has been seeking to

effectively use a large number of parallel processors

to accelerate execution of a single application

program, while another branch of the effort has been

seeking to efficiently share a single pool of

computing capacity among a large number of user

applications to improve the capacity utilization.

However, there have not been major synergies

between these two efforts; often, pursuing any one of

these traditional objectives rather happens at the

expense of the other. For instance, dedicating an

entire parallel processor based (super) computer per

individual application causes severely sub-optimal

computing resource utilization, as much of the

capacity would be idling much of the time. On the

other hand, seeking to improve utilization of

computing systems by sharing their processing

capacity among a number of user applications using

conventional technologies will cause non-

deterministic, compromised performance for the

individual applications, along with security concerns.

As such, the overall cost-efficiency of computing is

not improving as much as improvements toward

either of the two traditional objectives would imply:

traditionally, single application performance

maximization comes at the expense of system

utilization efficiency, while overall system efficiency

maximization comes at the expense of individual

application performance.

http://www.throughputer.com/
mailto:mark@throughputer.com

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 2 of 11

There thus exists a need for a new parallel computing

architecture, which, at the same time, enables

increasing the speed of executing application

programs, including through execution of a given

application in parallel across multiple processor

cores, as well as improving the utilization of the

available computing resources, thereby maximizing

the collective application processing on-time

throughput for a given cost budget. Moreover, even

outside traditional high performance computing, the

application performance requirements will

increasingly be exceeding the processing throughput

achievable from a single CPU core, e.g. due to the

practical limits being reached on the CPU clock rates.

This creates an emerging requirement for intra-

application parallel processing (at ever finer grades)

also for mainstream programs. Notably, these

internally parallelized enterprise and web applications

will be largely deployed on dynamically shared cloud

computing infrastructure. Accordingly, the emerging

form of mainstream computing calls for technology

innovation supporting executing large number of

internally parallelized applications on dynamically

shared parallel processing resource pools.

Generally, dynamically optimizing resource usage in

a large capacity parallel processing system among a

large number of applications and their instances and

tasks, in pursuing both predictable, high performance

for each individual application as well as efficient

system resource utilization, does present a complex

problem, resolving which would consume plenty of

the system’s resources if handled in software. It is not

trivial to answer the question: To which application

task instance should any given processing resource

be assigned at any given time, to achieve optimal

system-wide application processing throughput?

2. MULTI-STAGE PARALLEL

PROCESSING ARCHITECTURE

2.1 Overview
To address the above challenges, this paper presents

an architecture for extensible, application program

load and type adaptive, multi-stage manycore

processing systems (Fig. 1). The presented

architecture takes the following approach to enable

scaling the dynamic resource optimization for

increasing numbers (and types) of pooled processing

resources and application programs (apps), their

instances (insts) and tasks sharing the pooled

resources:

1) The processing resources and app processing is

partitioned into (manycore processor based)

processing stages, which, per any given app, can

be arranged to support various combinations of

pipelined and parallelized processing. This brings

the following benefits:

a. The system has to support, per each processing

stage, only one task per each of the apps

dynamically sharing the system. At each

processing stage though, there will be a

dynamically optimized number of active insts

of the local tasks of each app. The resource

management for each stage is thus simpler than

it would be for the full system, where there are

multiple tasks per each app.

b. The resource management is done

independently for each processing stage,

which, besides being simpler due to there being

just one task per app, limits the scope of the

function, adding to the scalability of the

architecture. Note that the dynamic resource

optimization at each processing stage of the

system, while done independently, is adaptive

to the apps’ processing load variations (incl.

the processing input volumes received by any

given stage from the other stages/external

network inputs), so that full system scope

resource usage optimization is achieved by the

per-stage distributed dynamic resource

management.

2) The processing core resource management at each

manycore based processing stage is further

partitioned as follows:

a. First, the allocation of the cores (of the local

manycore processor) among the apps (i.e. their

local tasks at that stage) is optimized

periodically, based (in part) on the input

processing load variations among the apps.

b. Based on such core allocations, highest priority

insts of the local app tasks are assigned for

processing on a number of cores allocated to

each given app. To minimize task switching

overhead, continuing app-task insts are kept at

their existing cores, and activating app-task

insts are mapped to cores occupied by de-

activating app-task insts -- on processors

supporting multiple (reconfigurable) core

types, so that the core types demanded by

incoming app-tasks match, to the extent

possible, the core type of their assigned core

slots occupied by the outgoing app-tasks.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 3 of 11

By partitioning the system-wide dynamic resource

management functionality per above, the individual

functions of resource management for dynamically

shared manycore arrays become feasible (e.g. in terms

complexities of data structures needed) for direct

hardware (e.g. FPGA) implementation. The all-

hardware implementation of such system functions

further adds to the scalability of the architecture (per

Figs. 1-5) via system software overhead reduction.

Since the hardware automated system functions do

not consume any of the system processor capacity no

matter how frequently the capacity is reallocated, and

since the hardware algorithms run in just a few clock

cycles, as well as since hardware automated task

switching for the processor cores is non-visible to

software, this architecture also enables re-optimizing

the system resource assignment as frequently as

needed to accommodate the apps’ processing load

variations. The main structures and elements of the

architecture, and their operation, are described in the

following.

2.2 Multi-stage Pipelined/Parallel Processing
Fig. 2 below illustrates the multi-stage parallel

processing architecture.

External

input ports

External

output ports

Packet

switch

(PS)

PS

ports #0

App. load

adaptive

manycore

processing

system

(worker

stage #0)

PS

ports #1
(worker

stage # 2)

PS

ports #T-1

(worker

stage # T-1)

App. load

adaptive

manycore

processing

system

(entry

stage)

App. load

adaptive

manycore

processing

system

(exit

stage)

PS input

ports #T

PS output

ports #T

PS ports #T

.

.

.

Figure 1. Multi-stage manycore processor system architecture.

General operation of the application load adaptive,

multi-stage parallel data processing system per FIG

1., focusing on the main I/O data flows, is as follows:

The system provides data processing services to be

used by external parties (e.g. by client apps) over

networks. The system receives data packets from its

users through its network input ports, and transmits

the processing results to the relevant parties through

its network output ports. Naturally the network ports

of the system of Fig. 1 can be used also for

connecting with other resources and services (e.g.

storage, data bases etc.) as/if necessary to produce the

requested processing results. The app tasks executing

on the entry stage manycore processor are typically of

‘master’ type for parallelized/pipelined apps, i.e., they

manage and distribute the processing workloads for

‘worker’ type tasks running on the worker stage

manycore processing systems (note that the processor

system hardware is similar for all instances of the

processing system). The insts of master tasks

typically do pre-processing (e.g. message/request

classification, data organization) and workflow

management based on input packets, and then

typically involve appropriate worker tasks at their

worker stage processors to perform the data

processing called for by the given input packet(s),

potentially in the context of and in connection with

related input and/or stored data elements. (The

processors can have access to system memories

through interfaces additional to the IO ports shown in

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 4 of 11

the Figs.) Accordingly, the master tasks typically pass

on the received data units (using direct connection

techniques to allow most of the data volumes being

transferred to bypass the actual processor cores)

through the inter-stage packet-switch (PS) to the

worker stage processors, with the destination app-task

inst identified for each data unit.

2.3 Inter-Stage Data Flow and Processing

Load Balancing
The any-to-any connectivity among the app-tasks of

all the processing stages provided by the PS (Fig.1)

enables organizing the worker tasks (located at the

array of worker stage processors) flexibly to suit the

individual needs (e.g. task inter-dependencies) of any

given app on the system: the worker tasks can be

arranged to conduct the work flow for the given app

using any desired combinations of parallel and

pipelined processing. E.g., it is possible to have

copies of a particular (data parallelizable) task of a

given app located on any number of the worker stages

in the architecture per Fig. 1, to provide a desired

number of parallel copies of a given app task. The set

of apps configured to run on the system have their

tasks identified by (intra-app) IDs according to their

descending order of relative workload levels. The

sum of the intra-app task IDs (with each ID

representing the workload ranking of its task within

its app) of the app-tasks hosted at any given

processing system is equalized by appropriately

locating the tasks of differing ID#s, i.e. of differing

workload levels, across the apps for each processing

stage, to achieve optimal overall load balancing. For

instance, in case of four worker stages, if the system

is shared among four apps and each of that set of apps

has four tasks, for each app of that set, the busiest

task (i.e. the worker task most often called for or

otherwise causing the heaviest processing load among

tasks of the app) is given task ID#0, the second

busiest task ID#1, the third busiest ID#2, and the

fourth ID#3. To balance the processing loads across

the apps among the worker stages of the system, the

worker stage #t gets task ID#t+m (rolling over at 3 to

0) of the app ID #m (t=0,1,…T-1; m=0,1,…M-1). In

this example scenario of four apps, four worker tasks

per app as well as four worker stages, the above

scheme causes the task IDs of the set of apps to be

placed at the processing stages per Tbl. 1 below:

App ID# m (to

right)
0 1 2 3

Worker stage# t

(below)

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 1.

As seen in the example of Tbl. 1, the sum of the task

ID#s (with each task ID# representing the workload

ranking of its task within its app) is the same for any

row i.e. for each worker stage. Applying this load

balancing scheme for differing numbers of processing

stages/tasks and apps is straightforward based on this

example, so that the overall task processing load is to

be, as much as possible, equal across all worker-stage

processors of the system. Advantages of such

schemes include optimal utilization efficiency of the

processing resources and minimizing the possibility

or effects of any of the worker-stage processors

forming system-wide performance bottlenecks.

2.4 Application-Load Adaptive Manycore

Processor Architecture
From here, we continue by exploring the internal

structure and operation of a given processing stage, a

high level functional block diagram of which is

shown in Fig. 2 below.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 5 of 11

Processor system

input port #0

Application load adaptive

manycore processor

system (a processing

stage in a multi-stage

system per FIG. 1)

Core #1

input port

.

.

.

Core #0

input port

Core #Y-1

input port

External input

ports or RX

direction of

inter-stage

ports (see FIG.

1)

Receive (RX)

logic for a

processing stage

Processor system

input port #1

Processor system

input port #X-1

Processor system

output port #0

.

.

.

External output

ports or TX

direction of

inter-stage

ports

(see FIG. 1)

Processor system

output port #1

Processor system

output port #Y-1

From each core to

its assigned app-inst:

Read control info

.

.

.
 From each app:

Nr of ready inst:s
and priority order of

instances
 Per each core:
ID# of selected

app-inst

Figure 2. Top-level diagram for any of the processing stages in the multi-stage parallel processing system

in Fig. 1.

Per Fig. 2, any of the processing stages of the system

(Fig. 1) has, besides the manycore processor system

(Figs. 3-5), an RX logic subsystem, which connects

input data packets from any of the input ports to any

of the processing cores of the processing stage,

according to at which core the indicated destination

app-inst of any given packet may be executing at any

given time. Moreover, the monitoring of the buffered

input data load levels per each destination app-inst at

the RX logic subsystem enables optimizing the

allocation of processing core capacity of the local

manycore processor among the app tasks hosted on

that processing stage. Internal elements and operation

of the application load adaptive manycore processor

system are illustrated in Fig. 3. Since there is one task

per app per processing stage (though there can be

multiple insts of any app-task at its local processing

stage), the term app-inst in the context of a single

processing stage means an instance of an app-task

hosted at the processing stage under study.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 6 of 11

controller

core

demand

figure

(CDFs)

core

core

core

core

core

core

. . .

.

.

.

core

fabric

Per each core:

active app-inst ID

priority order of

ready inst:s

core array

fabric network and memories

Per each

active app-inst:

execution core ID

operating

interface

core #1

input port

core #0

input port

core #Y-1

input port

.

.

.

output port #0

.

.

.

output port #1

output port #Y-1

From

each

app

mux

input port
read ctrl
from cores

To each app-inst:
read ctrl info

Figure 3. Application load adaptive manycore processor for the processing stage per Fig. 2 (within the

multi-stage parallel processing system per Fig. 1).

Fig. 3 provides a block diagram for the manycore

processor system dynamically shared among insts of

the locally hosted app-tasks, with capabilities for

application processing load adaptive allocation of the

cores among the apps, as well as for dynamically

reconfigured IO and memory access by the app-task

insts. Any of the cores of a processor per Fig. 3 can

comprise any types of processing hardware resources,

e.g. central processing units (CPUs), graphics

processing units (GPUs), digital signal processors

(DSPs) or application specific processors (ASPs) etc.,

and in programmable logic (FPGA) implementation,

the core type for any core slot is furthermore

reconfigurable per expressed demands of its assigned

app-task.

App specific logic modules at the RX module (Fig. 2)

write their associated apps’ capacity demand

indicators, core-demand-figures (CDFs), to the

controller of the local manycore processor. The CDFs

express how many cores their associated app is

presently able to utilize for its ready to execute insts.

Each app’s capacity demand expressions for the

controller further include a list of its ready insts in an

execution priority order. Criteria for prioritizing app-

insts for execution includes whether a given inst has

available to it such input data and fast-access memory

contents that enable it to execute at the given time.

The hardware logic based controller module within

the processor system, through a periodic process,

allocates and assigns the cores of the processor

among the set of apps and their insts (in part) based

on the CDFs of the apps. This app-inst to core

assignment process is exercised periodically, at

intervals such as once per a defined number (e.g.

1024) of processing core clock or instruction cycles.

Fig. 4 below provides a data flow diagram for the

hardware implemented controller, which periodically,

e.g. once per microsecond, selects app-insts for

execution, and places each selected-to-execute app-

inst to one of the cores of the local manycore

processor. As shown in Figs. 2 and 3, the app-inst to

core mapping info also directs muxing of input data

from the RX buffers of an appropriate app-inst to

each core of the array, as well as muxing of the read

control signals from the core array to the RX buffers

of the app-inst that is assigned for any given core at

any given time.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 7 of 11

Controller performing the periodic process of assigning app-inst:s to cores

Allocate core

slots to

applications

Core

demand

figures

(CDFs) from

applications

Core fabric, including IO, memory access and core-slot reconfiguration subsystems

Ready-task priority ordered

lists from applications,

along with the core types

demanded by each task

For each application:

Map selected tasks

to core slots and

assign appropriate core

type for each slot

For each core slot:

Active

application

task ID and

core type

For each

application:

Number of

cores

allocated

For each

application:

List of

selected

tasks, along

with their

demanded

core types

For each

application:

Select to-be-

executing

tasks

For each task:

Processing

core slot ID

Figure 4. App-inst to core mapping process for the manycore processor per Fig. 3.

Fig. 4 presents major phases of the app-inst to core

mapping process, used for maximizing the value-add

of the app processing throughput of the manycore

fabric shared among a number of apps. This process,

periodically selecting and mapping the to-be-

executing insts of the set of app-tasks to the array of

processing cores of the local processor, involves the

following steps:

(1) allocating the array of cores among the set of apps,

based on CDFs and contractual entitlements of the

apps, to produce for each app a number of cores

allocated to it (between the current and the next

run of the process); and

(2) based at least in part on the allocating, for each

given app that was allocated one or more cores:

(a) selecting, according to the inst priority list of

the given app, the highest priority insts of the

app for execution corresponding to the number

of cores allocated to the given app, and

(b) mapping each selected app-inst to one of the

available cores of the array, to produce,

i) per each core of the array, an identification

of the app-inst that the given core was

assigned to, and

ii) per each app-inst selected for execution on

the fabric, an identification of its assigned

core.

The periodically produced and updated outputs of the

controller process are used for periodically re-

configuring connectivity through the RX subsystem

(Fig. 2) as well as the fabric memory access

subsystem (Fig. 5).

2.5 Fabric Memory Access Subsystem for

Dynamically Allocated Manycore Processor
Fig. 5 and related specifications below, along with the

reference [1] (in particular its figures 8-10) and [3]

describe the manycore processor on-chip memory

access subsystem providing non-blocking processing

memory access (incl. for program instructions and

interim processing results) between the app-insts

dynamically assigned to cores of the array and the

app-inst specific memories at the memory array of the

core fabric. The capabilities per Fig. 5 provide logic,

wiring, memory etc. system resource efficient support

for executing any app-inst at any core within the

processor at any given time (as controlled by the

controller that periodically optimizes the allocation

and assignment of cores of the array among the

locally hosted app-insts), while keeping each given

app-inst transparently connected to its own

(instruction and interim data containing) memory

block at memory array.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 8 of 11

Array of cores

Cross-connect:

Core-specific app-inst memory to core muxes

W
rite and

read control

buses

from
 cores

R
ead buses

to cores

Cross-connect:

App-inst-specific core to app-inst memory muxes

Array of app-inst specific

processing memories

Controller

F
or each app-inst

(if selected to execute by latest run

of the process):
ID

o
f th

e execu
tio

n
 co

re

A
pp-inst

m
em

ory

access

Fabric

network

and

memories

F
or each core:

ID
of the

app-inst to execute

Figure 5. Dynamically reconfigured access by app-insts dynamically assigned for execution at the core

array to app-inst specific memory blocks within the core fabric.

Per Fig. 5, to direct write and read control access

from the array of cores to the array of app-inst

specific memories, the controller identifies, for app-

inst specific muxes at the cross-connect (XC)

between the core array and memory array, the

presently active source core (if any) for write and

read control access to each given app-inst specific

segment within the fabric memory array. Similarly, to

direct read access by the array of cores to the array of

app-inst specific memories, the controller identifies,

for core specific muxes at the XC, the memory

segment of the app-inst presently assigned for each

given core of the array. Based on the control by the

controller for a given core indicating that it will be

subject to an app-inst switchover, the currently

executing app-inst is made to stop executing and its

processing state from the core is backed up to the

segment of that exiting app-inst at the memory array,

while the processing state of the next app-inst

assigned to execute on the given core is retrieved to

the core from the memory array. Cores not indicated

by controller as being subject to app-inst switchover

continue their processing uninterruptedly through the

core allocation period transitions.

Note that applying of updated processing core ID#

configurations for the app-inst specific mux:s at the

XC and app-inst ID# configurations for the core

specific mux:s of the XC (Fig. 5) as well as of the RX

logic (Fig. 2) can be safely and efficiently done by the

hardware logic without software involvement, since

none of the app-insts needs to know whether or at

which core itself or any other app-inst is executing

within the system at any given time. Instead of relying

on knowledge of the their respective previous, current

(if any at a given time) or future execution cores by

either the application or any system software, the

architecture enables flexibly running any insts of any

app-tasks at any core of their local processing stages.

2.6 Specifics of the Application Instance to

Core Assignment Process

2.6.1 Hardware automation of dynamic resource

management

To enable rapidly re-optimizing the allocation and

assignment of the system processing core capacity

among the insts and tasks of the apps sharing the

processing system per Fig. 1 according to the realtime

processing load variations among the app-task-insts,

the dynamic resource management processes are

implemented by hardware logic in the manycore

processor controller modules per Fig. 4. Similar

processes are run (independently) for each of the

processing stages of a given multi-stage manycore

processor system per Fig. 1. The application

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 9 of 11

processing load adaptive, dynamic core assignment

process per Fig. 4 comprises algorithms for core

allocation, app-inst selection and mapping, as detailed

in the following.

2.6.2 Algorithm for allocating the cores among the

applications

Objectives for the core allocation algorithm include

maximizing the processor core utilization (i.e.,

generally minimizing, and so long as there are ready

app-insts, eliminating, core idling), while ensuring

that each app gets at least up to its entitled (e.g. a

contract based minimum) share of the processor core

capacity whenever it has processing load to utilize

such amount of cores. Each app sharing a given

manycore processor (Fig. 3) is specified its entitled

quota of the cores, at least up to which number of

cores it is to be allocated whenever it is able to

execute on such number of cores in parallel.

Naturally, the sum of the apps' core entitlements

(CEs) is not to exceed the total number of core slots

in the given processor. Each app on the processor gets

from each run of the core allocation algorithm:

(1) at least the lesser of its (a) CE and (b) core

demand figure (CDF) worth of the cores; plus

(2) after condition (1) is met for all apps sharing the

processor, as many additional cores to match its

CDF as is possible while maintaining fairness

among apps whose CDF is not fully met; plus

(3) the app's fair share of any cores remaining

unallocated after conditions (1) and (2) are met

for all the apps.

This algorithm allocating the cores to apps runs as

follows:

(i) First, any CDFs by all apps up to their CE of the

cores within the array are met. E.g., if a given app

#P had its CDF worth zero cores and entitlement

for four cores, it will be allocated zero cores by

this step (i). As another example, if a given app

#Q had its CDF worth five cores and entitlement

for one core, it will be allocated one core by this

stage of the algorithm. However, to ensure that

each app-task will be able at least to communicate

at some defined minimum frequency, the step (i)

of the algorithm allocates for each app, regardless

of the CDFs, at least one core once in a specified

number (e.g. sixteen) of the core allocation

periods.

(ii) Following step (i), any processing cores remaining

unallocated are allocated, one core per app at a

time, among the apps whose CDF had not been

met by the amounts of cores so far allocated to

them by preceding iterations of this step (ii) within

the given run of the algorithm. For instance, if

after step (i) there remained eight unallocated

cores and the sum of unmet portions of the app

CDFs was six cores, the app #Q, based on the

results of step (i) per above, will be allocated four

more cores by this step (ii) to match its CDF.

(iii) Following step (ii), any processing cores still

remaining unallocated are allocated among the

apps evenly, one core per app at time, until all the

cores of the array are allocated among the set of

apps. Continuing the example case from steps (i)

and (ii) above, this step (iii) will allocate the

remaining two cores to certain two of the apps

(one for each). Apps with zero existing allocated

cores, e.g. app #P from step (i), are prioritized in

allocating the remaining cores by this step (iii).

Moreover, the iterations of steps (ii) and (iii) per

above are started from a revolving app ID# within the

set, so that the app ID# to be served first by these

iterations is incremented by one (and returning to 0

after reaching the highest app ID#) for each

successive run of the algorithm.

Accordingly, all cores of the array are allocated on

each run of the above algorithm according to apps’

processing load variations while honoring their

contractual entitlements. I.e., the allocating of the

array of cores by the algorithm is done in order to

minimize the greatest amount of unmet demands for

cores (i.e. greatest difference between the CDF and

allocated number of cores for any given app) among

the set of apps, while ensuring that any given app gets

its CDF at least within its CE met on each successive

run of the algorithm.

2.6.3 Algorithm for assigning app-insts for the

cores

Following the allocation of the array of cores among

the apps, for each app on the processor that was

allocated one or more cores by the latest run of the

core allocation algorithm, the individual ready-to-

execute app-insts are selected and mapped to the

number of cores allocated to the given app. One of

the selected app-insts is assigned per one core by each

run of this algorithm.

The app-inst to core assignment algorithm for each

given app begins by keeping any continuing app-insts,

i.e., app-insts selected to run on the core array both on

the present and the next core allocation period,

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 10 of 11

mapped to their current cores. After that rule is met,

any newly selected insts for the given app are mapped

to available cores. Assuming that a given app was

allocated k (a positive integer) cores beyond those

used by its continuing app-insts, k highest priority

not-yet-mapped app-insts of the app are chosen to be

mapped to the remaining available cores allocated to

the given app, starting from the insts that are ready-

to-execute.

When the app-inst to core mapping module of the

controller (Fig. 4) gets an updated list of selected

insts for the apps (following a change in either or

both of core to app allocations or app-inst priority

lists of one or more apps), it identifies from them the

following:

I. The set of activating, to-be-mapped, app-insts, i.e.,

selected app-insts that were not mapped to any

core by the previous run of the placement

algorithm;

II. The set of deactivating app-insts, i.e., app-insts

that were included in the previous, but not in the

latest, selected app-inst lists; and

III. The set of available cores, i.e., cores which in the

latest assignment table were assigned to the set of

deactivating app-insts (set II above).

The sets I and II can be obtained as the incoming and

outgoing app-insts for each of the cores for which the

two are different. The app-inst to core assignment

algorithm uses the info from the above sets to map the

active app-insts to cores of the array so as to keep the

continuing app-insts executing on their present cores,

thus maximizing the utilization of the core array for

user app processing, and by mapping the individual

app-insts within the set I of activating app-insts for

processing at the set III of available cores (according

to their increasing app-inst and core IDs).

Moreover, regarding placement of activating app-

insts (set I as discussed above) on processors with

reconfigurable core slots, the assignment algorithm

seeks to minimize the amount of core slots for which

the activating app-inst demands a different execution

core type than the deactivating app-inst did. I.e., the

app-inst to core assignment algorithm will, to the

extent possible, place activating app-insts to such

core slots (within the core array of the local

processor) where the deactivating app-inst had the

same execution core type. E.g., activating app-inst

demanding the DSP type execution core will be

placed to the core slots where the deactivating app-

insts also had run on DSP type cores. This sub-step in

placing the activating app-insts to their target core

slots uses as one of its inputs the new and preceding

versions of the core slot ID indexed active app-inst ID

and core type arrays, to allow matching the activating

app-insts and the available core slots according to the

core type, in order to minimize the need for core slot

reconfigurations. For details on the core slot dynamic

reconfiguration, please see [2].

3. CONCLUSIONS
Optimizing dynamic resource allocation on parallel

processing resource pools shared among a number of

internally parallelized and/or pipelined applications is

a complex challenge, particularly when pursuing

predictable, high performance (on-time processing

throughput) for each of the individual applications as

well as system-wide cost-efficiency, including in

terms of efficient resource usage. Moreover, the

resource allocation is merely a starting point for the

overall challenge of orchestrating the execution of

multiple concurrent applications on a dynamically

shared parallel processing hardware: in addition,

there needs to be a solution for handling the dynamic

parallel execution routines, such as appropriately

connecting the inter-task communications among the

tasks of the application instances, and keeping each

executing application task instance connected to its

own processing context, while such application task

instances are dynamically scheduled and placed on

the shared pool of processing cores.

Conventional computing paradigms have relied on

system software for handling the dynamic resource

management etc. parallel execution routines.

However, by considering the data volumes and

processing intensiveness of handling the functions per

above in software when trying to scale up the number

of pooled processing resources as well as the number

of applications and their tasks sharing such resource

pools, and while trying to increase the frequency of

resource allocation optimization, it becomes clear that

the system software would eventually begin

consuming a disproportionately high amount of the

processing capacity of the given pool, to the degree

that plain scaling of conventional architectures will

lead not only to reducing resource utilization

efficiency, but eventually also to decreasing system-

wide application on-time processing throughput: after

some point, the incremental processing resources,

applications and tasks would begin to increase the

overhead rate per a processing core so severely that

the incremental scaling units would begin to reduce

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 11 of 11

the app throughput of all the cores in the given pool

by a factor greater than they would increase the

system-wide app processing throughput capacity.

The presented architecture is designed to provide

hardware logic based approach to the above

scalability challenge being faced when seeking to

improve both the individual application on-time

processing throughput as well as the system-wide

cost-efficiency and scalability of high volume, multi-

user (e.g. cloud) computing. To the description

herein, the reference [4] adds descriptions of (i)

billing methods with incentive system for maximizing

the amount of processing resources available to meet

processing load demand peaks of the user

applications sharing the given system, (ii) a memory

access system that both seeks to keep the on-chip fast-

access memory contents optimal w.r.t. to the

presently active application-task instances’ needs as

well as uses the readiness of app-task insts fast-access

memory contents as a factor in optimally scheduling

such insts for execution, (iii) inter-application

performance isolation for inter-task communications,

and (iv) hardware logic based load balancers for a

cluster of multi-stage manycore processing systems

per this paper.

4. REFERENCES
[1] Sandstrom, M. 2013. US patent application

#13959596. Program Execution Optimization for

Multi-stage Manycore Processors.

[2] Sandstrom, M. 2012. US patent application

#13717649. Application Load and Type Adaptive

Manycore Processor Architecture.

[3] Sandstrom, M. 2013. US patent application

#13906159. Memory Architecture For

Dynamically Allocated Manycore Processor.

[4] Sandstrom, M. 2014. US patent application

#61934747. Dynamic Parallel Execution.

http://www.throughputer.com/

