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ABSTRACT 

Presented cloud computing billing model is designed 

for maximizing value-adding throughput of a multi-

user parallel computing platform across a set of users 

of the platform. The model enables maximally 

demand driven computing capacity allocation while 

guaranteeing each user application its contract-based 

assured minimum capacity access level whenever 

actually demanded. The billing model thus facilitates 

providing maximized application processing 

throughput per unit cost across the set of user 

applications dynamically sharing the platform. 

Technically, for any given user contract, on any given 

billing assessment period, the model determines a 

level of the given contract's demand for capacity that 

is met by the capacity allocated to it, and assess 

billables for the contract based on such met demand 

and the contract's assured access to the capacity, as 

well as billing rates on individual billing assessment 

periods for the met demand and the contract's assured 

access for the capacity. 

Categories and Subject Descriptors 

C.2.4 [Cloud computing] 

General Terms 

Algorithms, Management, Performance, Design, 

Economics, Experimentation, Security, 

Standardization, Theory. 

Keywords 

Billing, throughput, optimization, cost-efficiency, 

performance. 

1. INTRODUCTION 
Computing systems will increasingly be based on 

large arrays of processing cores. Particularly in cloud 

computing, the many-core processing hardware will 

be shared among a number of software applications, 

which often belong to different users, while also 

individual software applications will increasingly be 

executing on multiple processing cores in parallel. As 

the processing loads and types of the applications for 

a given computing platform will vary over time, the 

particular set of application program processing tasks 

running on the processing cores of a given parallel 

computing platform will need to be dynamically 

updated, potentially highly frequently, in order to 

pursue optimized application program level as well as 

system wide processing throughput. To cost-

efficiently enable such dynamic application task 

switching on a parallel computing platform, novel 

multi-user parallel computing architectures are needed 

to support dynamically assigning optimal sets of 

processing task instances for a given pool of parallel 

processing cores, and efficiently connecting the 

processing context of any given task instance to any 

core of the system (based on which task instance is 

assigned for execution at any core at any given time) 

as well as to facilitate efficient communication among 

the tasks of any given application program instance 

running on the many-core processing system. 

Moreover, innovations are needed regarding effective 

pricing and billing of user contracts, to increase the 

parallel computing cost-efficiency both for the users 

and provider of the computing service. Particular 

challenges to be solved include providing effective 

compute capacity service unit pricing model and 

billing techniques with appropriate incentives and 

tools to optimally spread application processing loads 

in time and space across the available parallel data 

processing resources, in order to pursue maximization 

of data processing throughput per unit cost for the 

users as well as maximization of profitability for the 

service provider. 

2. CONTEXT 

2.1 Manycore Processor Dynamically Allocated 

among Multiple Parallel Programs 

The cloud computing billing model to address the 

above outlined innovation challenge is presented in 

the following in the context of a parallel processing 

system, referred to as a cloud processor, that is 

dynamically shared among a number of application 

programs, each of which has a variable number of 

ready-to-execute instances.  

In the assumed operating context, each of the 

application program instances will typically further 

have a variable number of ready-to-execute tasks. 

However, in case of a multi-stage processing system, 

where for any given application each task is hosted on 
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a different processing stage, we can limit our study of 

the billing methods here to just one of the processing 

stages. Thus in the following discussion there will be 

just one task type per any of the applications at the 

processing system instance under study (e.g. the cloud 

processor per Fig. 1). In a system with multiple 

pipelined and/or parallel processing stages, the total 

billables for a given application will be the sum of its 

billables across all the processing stages. A suitable 

multi-stage parallel processing architecture to extend 

the scope of the herein discussed techniques is 

provided in [1]. 

A block diagram for such a cloud processor is shown 

in Fig. 1 below. 
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Figure 1. Cloud processor system architecture. 

The dynamic management of the parallel processing 

resources (core slots in the core array) at a cloud 

processor per Fig. 1 is done by its controller, which 

(per Fig. 2) periodically allocates the cores among the 

application programs sharing the manycore processor, 

and assigns one of the processing core slots for each 

application instance selected execution on a given 

core allocation period. The core allocation period 

(CAP), e.g. 1 microsecond (can be even shorter if 

desired when the controller is implemented by 

hardware logic), is used as the elementary billing 

counter time tick for the billing assessment periods 

(BAPs) for the application programs sharing the given 

cloud processor. 
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Figure 2. Cloud processor controller, including the context for the billing subsystem. 

Comprehensive technical references for a cloud 

processor per the architecture diagrams in Figs. 1 and 

2 are found in [1]-[3]. Taken together, the techniques 

per [1]-[3], pursue maximizing the value-adding user 

application processing throughput across all the 

applications sharing the given pool of parallel 

processing resources based on the realtime processing 

load demand variations of the individual applications, 

while providing for each application assured access to 

its contract based share of the processing capacity 

whenever actually demanded. Among the novel 

aspects of such cloud processors, of particular 

relevance to the billing functionality is the algorithm 

(see the leftmost box in the controller module of Fig. 

2 for context) for periodically optimizing the 

allocation of the given pool of processing cores 

among the set of applications sharing such a pool. 

2.2 Core Allocation Algorithm 
Objectives for the core allocation algorithm include 

maximizing the processor core utilization (i.e., 

generally minimizing, and so long as there are ready 

app-insts, eliminating, core idling), while ensuring 

that each user application program (app) gets at least 

up to its entitled (e.g. a contract based minimum) 

share of the processor core capacity whenever it has 

processing load to utilize such amount of cores. Each 

app sharing a given manycore processor (Fig. 3) is 

specified its entitled quota of the cores, at least up to 

which number of cores it is to be allocated whenever 

it is able to execute on such number of cores in 

parallel. Naturally, the sum of the apps' core 

entitlements (CEs) is not to exceed the total number 

of core slots in the given processor. Each app on the 

processor gets from each run of the core allocation 

algorithm: 

(1) at least the lesser of its (a) core entitlement (CE) 

and (b) core demand figure (CDF) worth of the 

cores; plus 

(2) after condition (1) is met for all apps sharing the 

processor, as many additional cores to match its 

CDF as is possible while maintaining fairness 

among apps whose CDF is not fully met; plus  

(3) the app's fair share of any cores remaining 

unallocated after conditions (1) and (2) are met 

for all the apps. 

This algorithm allocating the cores to apps runs as 

follows: 

(i) First, any CDFs by all apps up to their CE of the 

cores within the array are met. E.g., if a given app 

#P had its CDF worth zero cores and entitlement 

for four cores, it will be allocated zero cores by 

this step (i). As another example, if a given app #Q 

had its CDF worth five cores and entitlement for 

one core, it will be allocated one core by this stage 

of the algorithm. However, to ensure that each 

app-task will be able at least to communicate at 

some defined minimum frequency, the step (i) of 
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the algorithm allocates for each app, regardless of 

the CDFs, at least one core once in a specified 

number (e.g. sixteen) of the core allocation 

periods. 

(ii) Following step (i), any processing cores remaining 

unallocated are allocated, one core per app at a 

time, among the apps whose CDF had not been 

met by the amounts of cores so far allocated to 

them by preceding iterations of this step (ii) within 

the given run of the algorithm. For instance, if 

after step (i) there remained eight unallocated 

cores and the sum of unmet portions of the app 

CDFs was six cores, the app #Q, based on the 

results of step (i) per above, will be allocated four 

more cores by this step (ii) to match its CDF. 

(iii) Following step (ii), any processing cores still 

remaining unallocated are allocated among the 

apps evenly, one core per app at time, until all the 

cores of the array are allocated among the set of 

apps. Continuing the example case from steps (i) 

and (ii) above, this step (iii) will allocate the 

remaining two cores to certain two of the apps 

(one for each). Apps with zero existing allocated 

cores, e.g. app #P from step (i), are prioritized in 

allocating the remaining cores by this step (iii). 

Moreover, the iterations of steps (ii) and (iii) per 

above are started from a revolving app ID# within the 

set, so that the app ID# to be served first by these 

iterations is incremented by one (and returning to 0 

after reaching the highest app ID#) for each 

successive run of the algorithm. 

Accordingly, all cores of the array are allocated on 

each run of the above algorithm according to apps’ 

processing load variations while honoring their 

contractual entitlements. I.e., the allocating of the 

array of cores by the algorithm is done in order to 

minimize the greatest amount of unmet demands for 

cores (i.e. greatest difference between the CDF and 

allocated number of cores for any given app) among 

the set of apps, while ensuring that any given app gets 

its CDF at least within its CE met on each successive 

run of the algorithm. 

The remaining elements of the cloud processor 

architecture per Fig. 1, including its controller process 

per Fig. 3, are described more comprehensively in [1]-

[3]. In summary, the cloud processor hardware 

provides, besides the processing cores, and the 

dynamic core allocation per above, the functionalities 

of monitoring applications’ processing loads and their 

contractual core capacity entitlements, prioritizing and 

selecting application task instances for execution, 

mapping selected task instances for processing on 

their assigned cores and accordingly dynamically 

configuring the memory and IO access subsystems 

(and on programmable hardware, the core slot types), 

and arranging the inter-task communications. While 

all these hardware-automated functionalities are 

essential to enable the dynamic parallel program 

execution, only the core allocation algorithm per 

above impacts the billing functionality which is the 

focus of this paper. 

2.3 Billing System 

2.3.1 Overview 

The presented billing techniques are designed for 

maximizing the value-add of the application 

processing throughput of a multi-user parallel 

computing platform across a set of users of the service 

provided with the platform. These billing techniques, 

for any given user contract among the contracts 

supported by the platform, and on any given billing 

assessment period, determine a level of a demand for 

the capacity of the platform associated with the given 

contract that is met by a level of access to the capacity 

of the platform allocated to the given contract, and 

assess billables for the given contract based on 1) 

such met demand and 2) a level of assured access to 

the capacity of the platform associated with the given 

contract, as well as 3) billing rates, applicable for the 

given billing assessment period, for (a) the met 

demand and (b) the level of assured access associated 

with the given contract. 

A logic block diagram billing subsystem for the cloud 

processor per Figs. 1 and 2 is presented in Fig. 3 

below. 
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Figure 3. Billing subsystem of the cloud processor controller. 

2.3.2 Objectives 

The presented cloud processor billing techniques 

target maximizing: i) the on-time data processing 

throughput per unit cost for the users of a given 

processing system per Fig. 1, and ii) the revenue over 

a period of time for the service provider operating 

such a system of a certain total cost. Accordingly, 

these techniques have the following objectives: 

1) Maximizing, at given billing rates for demand-

based core allocations (DBCAs) for a billing 

assessment period (BAP), the total volume of 

demand-based core allocations for the programs 

configured for a given system per Fig. 1. Herein, 

DBCA refers to an amount of cores allocated to a 

program to meet that program’s core demand 

figures (CDF) on the given BAP (i.e., any cores 

allocated for a program beyond the CDF of the 

program are not counted as demand based core 

allocations). DBCA for a given program on a 

given core allocation period (CAP) is taken as the 

lesser of the CDF and allocated core count of the 

program. 

2) Maximizing, at given billing rates for core 

entitlements (CEs), the number of core 

entitlements sold for user contracts supported by a 

given system per Fig. 1. CE herein refers to the 

number of cores up to which amount of cores of 

the shared array a given user program is assured 

to get its (CDFs) met by core allocations on 

successive runs of the algorithm. 

These objectives reflect the utility for the users 

running their programs on a system per Fig. 1; the 

users are assumed to perceive value in, and be willing 

to pay for, assured access to their desired level of 

capacity of a given compute system and their actual 

usage of the platform capacity. Accordingly, the 

above objectives 1) and 2) are among principal factors 

driving the revenue for the operator of the given 

system per Fig. 1. 

2.3.3 Billing Formula 

Per Fig. 3, the billables (B) for the operator of the 

system from a given user contract is per the following 

equation: B = x*CE + y*DBCA (Equation 1), wherein 

CE stands for core entitlement for the user, DBCA 

stands for the amount of core allocations to that user’s 

program to meet its CDFs for the Core Allocation 

Periods (CAPs, e.g. 1 microsecond each) during the 

contract time period in question, and x and y are 

billing rates per the contract that convert CE and 

DBCA into monetary figures.  

An advantage of this billing method is that a portion 

(i.e. the term y*DBCA) of the cost of the utility 

computing service for a user running its program on a 

system per Fig. 1 is based on the CDFs of the user’s 

program (to the degree that CDFs are met by core 
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allocations). Therefore, each user of the system per 

Fig. 1 has an economic incentive to configure its 

programs so that they eliminate any CDFs beyond the 

number of cores that the given program is actually 

able to utilize at the given time. If so allowed for a 

given user contract, the system will generate the 

CDFs for the user automatically based on the input 

data load levels for the user program instances. 

Whether the CDFs are generated by a user programs 

or the system on their behalf, the users have the 

incentive to not automatically (cause a) demand (for) 

at least their CE worth of cores irrespective of on how 

many cores the given program is able to execute on in 

parallel at any given time. This incentive leads to 

increasing the average amount of surplus cores for 

runs of the core allocation algorithm i.e. cores that can 

be allocated in a fully demand driven manner (rather 

than in a manner to just meet the CDFs by each 

application for their CE figure worth of cores). Such 

maximally demand driven core allocation (which 

nevertheless allows guaranteeing each user 

application an assured, contract defined minimum 

capacity access level whenever actually demanded) 

facilitates providing maximized value-adding 

processing throughput per normalized cost across the 

set of user applications dynamically sharing the 

system per Fig. 1. 

Moreover, either or both of the billing rates x and y 

for Equation 1 can be specified in the user contract to 

vary over time. The term x*CE can take a form of a 

sum such as x1*CE1 + x2*CE2, wherein, for 

example, x1 is the billing rate for a core entitlement 

during specified premium businesses hours (e.g. 

Monday-Friday 9am - 5pm at the local time zone of 

the given platform or user) and x2 the billing rate for 

a core entitlement outside the premium business 

hours, while CE1 and CE2 are core entitlements for 

the given user contract for the premium and non-

premium hours, respectively. Naturally, there can be 

more than just two time phases with their respective 

billing rates. For instance, in addition to premium 

pricing during the business hours, also evening hours 

5 pm - 1 am could have a different billing rate than 

1am - 9am, and so forth, depending on the popularity 

of the compute capacity usage during any given hours 

of the day. Similarly, different days of the week, 

special calendar days etc. can have different billing 

rates, based on expected popularity of compute 

capacity on such days. Naturally, this discussion 

applies also the for the coefficient y of the term 

y*DBCA in Equation 1. 

Per Fig. 3 (see also context from Figs. 1 and 2), 

digital hardware logic within the controller module 

functions as a billing counter for the contracts 

supported by a given system per Fig. 1. In the logic 

implementation for the billing subsystem functionality 

discussed herein, in addition to the billing rate values, 

the signals x and y, provide notifications of transitions 

of contract time phases at which the CE and DBCA 

billing rates (x and y) get new values. In such a logic 

implementation, DBCA based billing counter counts 

an average number of cores allocated to a given user 

program over the core allocation periods (CAPs) 

during a given billing assessment period (BAP) (i.e. 

time between two successive changes of the rate y, or 

the maximum BAP duration configured for the 

system), and multiplies this average DBCA amount 

with a total DBCA billing rate per core applicable for 

that BAP. Similarly, the CE based billing counter 

counts the average CE level for the given program (or 

simply takes any constant CE level for the time phase 

in question) for a given BAP for which the CE billing 

rate remains a constant, and multiplies that average 

(or simply constant) CE level with a total CE billing 

rate applicable for that BAP. At user billing intervals, 

the adder accumulates the series of billable 

components, so produced for such BAPs of constant 

billing rates to form the billables for the given 

program. For context, the typical CAPs consist of tens 

to thousands of processing logic clock cycles, thus 

lasting for microseconds or less, while the BAPs, at 

boundaries of which the billing rates change, may last 

from minutes to hours, comprising several millions to 

billions of CAPs. Finally, the user contract billing 

periods are typically calendar months, thus typically 

comprising tens to hundreds BAPs. 

2.3.4 Usage Scenarios 

The compute capacity provider operating a platform 

based on system(s) per Fig. 1 can offer different types 

of CE time profiles for different application types. For 

instance, a service provider operating the platform 

could sell four basic contract types with differing CE 

time profiles per examples of contract plans A, B, C 

and D in Tbl. 1 below: 

 

 

 

 

http://www.throughputer.com/


© ThroughPuter, Inc. All rights reserved. 

www.throughputer.com  

Page 7 of 10 

 Plan A B C D  

 

Contract 
type: 

enterprise 
entertainmen

t 
batch always on 

Sum of CEs = cores 
needed for the 

below contract mix 

 
Number of 
contracts 1 3 1 2  

CEs - time 
profiled: 

- business 
hours 8 2 0 1 16 

 
- evening 

hours 1 4 0 1 15 

 
- night 

hours 0 2 8 1 16 

 
Max during 
24h:     16 

CEs - flat: - any hour 8 4 8 1 30 

Cost-efficiency gain of  
time profiled CEs vs. 

flat CEs: 
(30-16)/16 = 87.5% 

Table 1.

As illustrated in Tbl. 1, the capability to allow 

configuring compute capacity contracts with differing 

CE time profiles, particularly contract types with non-

overlapping CE peaks on a given platform per Fig. 1, 

can be used both for improving the computing cost-

efficiency for the users of the compute service 

provided through the platform as well as increasing 

the revenues that the compute capacity service 

provider is able to achieve with the platform of a 

certain cost of ownership. Either or both of the CE 

and DBCA billing rates can be set for different values 

on the different billing assessment periods (BAPs) 

within day, week, month, etc., in order to optimally 

even out the user program’s collective processing load 

for a given system per Fig. 1 over time, and thereby, 

maximize the cost efficiency for the users of the 

computing service provided with the given platform 

and/or the revenue generation rate for the service 

provider operating the platform. For instance, in an 

example scenario, the CE billing rate on business days 

could be $0.08 per a core for the BAP of the business 

hours, $0.04 for the BAP of the evening hours, and 

$0.01 for the BAP of night hours, while DBCA billing 

rate, per the average number of demand based cores 

allocated to a given program over the eight hours of 

these daily BAPs, could be $0.04 for the business, 

$0.02 for evening, and $0.01 for night BAPs. These 

daily BAP billing rates can naturally be set to any 

other values as well, and can have differing values on 

different calendar days, as well as different week days 

(e.g. Monday-Friday versus Saturday-Sunday) can 

have non-uniform BAP phasing (e.g. Saturday-

Sunday could replace the business hour BAP of 

Monday-Friday with ‘extended’ evening hour BAP), 

etc. 

With the example values of Tbl. 1 for a mix (or 

‘basket’ ) of enterprise, entertainment (including news 

etc.), batch job (overnight block data processing), and 

always-on type of applications, it can be seen that the 

capability to configure applications for a given 

platform per Fig. 1 with different CE time profiles 

enables the service provider operating the platform to 

support a given set of applications, with their 

collective CE requirements, with a significantly 

reduced system processing core capacity requirement, 

i.e., with a lower cost base for the revenues generated 

by the given set of user applications. With the 

numerical example shown in Tbl. 1, this system core 

utilization efficiency gain with time-profiled contract 

CEs compared to flat CEs enables a reduction from 30 

to 16 cores needed for the provided mix of user 

contracts. In turn, this compute resource utilization 

efficiency gain through time profiled CEs reduces the 

cost of revenue for the utility computing service 

provider by an accordant factor. Put differently, the 

service provider’s revenue per unit cost of the service 

provided (driven by the number of cores needed to 

support a given set of contracts) is multiplied 

accordingly. 

Note that in discussion herein regarding the example 

of Tbl. 1, also the flat CE reference, against which the 

cost-efficiency of the time profiled CE contracts are 

compared, is assumed to be implemented on a system 
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per Fig. 1 that supports the application load adaptive 

core allocation per Ch. 2.2 etc. dynamic parallel 

execution techniques per [1]-[3]. Since the described 

dynamic compute resource allocation with contract 

specified minimum system access level guarantees (to 

be met when so demanded) is not supported by 

conventional computing systems, the contracts 

supported with a platform per Fig. 1, i.e. contracts 

with the capability to burst to up to the full system 

core capacity while having a contract defined 

minimum assured level of access to the shared system 

capacity, provide a higher market value than 

conventional contract types, which provide either only 

a dedicated capacity share (but without a capability to 

dynamically, without user or platform operator 

involvement, burst beyond the dedicated cores) or a 

capability to burst (but without a contract defined 

minimum core count based access level that the user 

contract is guaranteed to get whenever needed). 

Moreover, regarding Tbl. 1, please also note that CE 

level of 0 does not imply that such contract type 

would not allow the application under that contract to 

execute on its host system per Fig. 1 during the hours 

in question; instead, CE of 0 indicates that, while the 

application is not guaranteed to have its CDFs met for 

up to any specified minimum core count, it will still in 

practice get its demand based fair of share of the cores 

allocated to it after the CDFs of set of the applications 

up to their CE levels have been met (per Ch. 2.2). In 

fact, at times when there are no other user application 

expressing a positive CDF at a given system per Fig. 

1, the application with CE of 0 will get its CDFs met 

all the way to the total core count of the array. 

The 24 hour cycle for the CE time profiles per 

example of Tbl. 1 here is merely to illustrate the 

capability to facilitate efficient combining of 

applications with differing demand time profiles for 

compute capacity into a shared compute capacity 

pool. In various implementation scenarios, there can 

be, for instance, further variants of plans within the 

basic contract types (e.g. plans A through D per Tbl. 

1) such that offer greater CE levels than the norm for 

the given base plan (e.g. plan A) at specified seasons 

or calendar dates of the year (either during the peak 

hours of the profile or throughout given 24 hour days) 

in exchange of lower CE levels than the norm for that 

base plan at other dates or seasons. Besides 

combining contracts with differing CE profiles within 

24h cycles as illustrated in Tbl. 1 to dynamically 

share the same capacity pools, the system also 

facilitates combining the seasonally differing variants 

of contracts within a given plan type (i.e. variants 

with non-coinciding seasonal peaks in their CE 

profiles) in the same capacity pools for further 

capacity utilization efficiency gains, in addition to the 

8-hour phases shown in Tbl. 1. Moreover, there can 

be variants of contract types within a given base plan 

that have finer time granularity in their CE profiles. 

For instance, among the contracts of type B, there can 

be a variant that offers greater than the standard CE 

level of the plan type for the night hours (e.g. 1am - 

9am) at specific timeslots (e.g. for a news casts at for 

15 minutes at 6am, 7am, 8am) in exchange of lower 

CE at other times during the night hours. The system 

facilitates efficiently combining these type of variants 

of contracts within a given base type with 

complementary peaks and valleys in their CE profiles 

also within a given (8 hour) phase of the 24h cycle. 

As well, this type of combining of complementary 

variants (either seasonally, within 24h cycles, etc.) of 

a given contract type can take place within the 

aggregate CE subpool of the contracts of the given 

base type. In the example shown in Tbl. 1, this type of 

intra contract type combining of complementary 

variants can thus take place e.g. among the three 

contracts of type B, whose aggregate CE level is, for 

instance, during the night hours worth 3*2 = 6 cores 

for each CAP. At systems per Fig. 1 with greater 

number of cores, there will normally be a greater 

number of applications of any given type sharing the 

systems (and a greater subpool of CEs for each 

contract type) than what is shown in the simple 

illustration example of Tbl. 1. 

2.3.5 Hardware Implementation for High 

Resolution and Overhead Elimination 

The direct hardware logic implementation of the user 

application billing counters per Fig. 3, including the 

hardware logic based subcounter for computing the 

CE based billables components for each given 

application on the successive CAPs and BAPs, 

enables supporting (in practical terms) infinitely fine 

granularity of CE time profiling for the contract types 

and their variants. Moreover, the capability to 

customize the contract and variant CE time profiles 

per their application specific demands for processing 

capacity, with the hardware logic based (down to 

clock cycle) fine granularity, determinism, accuracy 

and efficiency, enables the computing service 

provider operating a system per Fig. 1 to profitably 

sell highly competitively priced compute capacity 

service contracts, with the offered customizable CE 

time profiles accurately matching the processing 

capacity demands of any given application type. With 
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these capabilities of the system, the users with less 

time sensitive programs, for instance among the 

programs within a given base plan, have an incentive 

to shift their processing loads (at least in term of their 

core entitlements) to less busy times, to make room 

for CE peaks at more popular times for the 

applications than can afford the more pricier CEs at 

such times of high aggregate demand for CEs 

(specifically, high aggregate demand that would exist 

if the CE pricing adjustment techniques were not 

used). These system software overhead eliminating, 

fine granularity hardware logic based pricing 

adjustment, billables assessment and efficient 

compute platform sharing techniques per above 

facilitate both maximizing the users’ net value of the 

compute service being subscribed to as well as the 

service provider’s profitability. 

3. CONCLUSIONS 
The presented dynamic parallel cloud computing 

billing model enables combining the desired aspects 

of per-user dedicated and multi-user shared capacity 

based computing services. Each user is guaranteed its 

access to its contract-specified level of the processing 

capacity whenever actually demanded. However, the 

contract specified capacity entitlements are neither 

kept locked down to their associated programs (at 

times when the processing load associated with a 

given user program does not demand its entitlement 

worth of processing core capacity) nor are they any 

limits for maximum capacity available for their user 

programs (at times when the processing load of a 

given user program exceeds its entitlement worth of 

core capacity). In fact, the incentives that the billing 

model provides for the user programs to economize 

on their core capacity demand expressions (i.e. to only 

demand as much capacity as their current processing 

load demands, rather than at least their capacity 

entitlement worth of processing cores regardless of 

the actual processing load) lead to maximization of 

the portion of the system processing capacity 

available for realtime application processing load 

variation based capacity allocation, to match the 

processing capacity demand peaks of the user 

programs (beyond their capacity entitlement levels). 

Accordingly, the presented billing techniques for 

parallel processing system capacity utilization and 

application processing performance (per normalized 

cost) optimization described in the foregoing provide 

the following fundamental advantages: 

 

 Increased user’s utility, measured as demanded-

and-allocated cores per unit cost, as well as, in 

most cases, allocated cores per unit cost. Note 

that, compared to a case where the users would 

purely pay for their core entitlements (CEs), and 

as such have no direct incentive to ever demand 

less than their CE worth of cores, the billing 

method wherein a portion of the billables per a 

user is based on the user’s demand-based-core-

allocations (DBCAs) (Eq. 1; Fig. 3) during the 

billing assessment period, incentivizes the users to 

economize on their core demand figures (CDFs) 

(e.g. not demand their CE worth of cores unless 

the given user application is able to effectively 

utilize at the time such number of cores). In turn, 

this leads to there on average being more cores, 

per unit cost for a system per Fig. 1, to be 

allocated to meet CDFs above any given user’s 

CE, when the given user’s program is actually 

able to benefit from such bursting. Note also that 

cores allocated beyond the CDF of the user’s 

application do not cost the user anything, while a 

users’ program can gain performance benefit from 

receiving a greater than number of cores allocated 

to it than it demanded. Thus the described billing 

techniques (together with the dynamic parallel 

execution techniques per [1]-[3]) maximize the 

amount of utilizable parallel execution core 

capacity received by each given user application 

on systems per Fig. 1 per unit of cost of the 

computing service provided through such 

platform. 

 Increased revenue generating capability for the 

service provider from CE based billables, per unit 

cost for a system per Fig. 1, through the ability to 

offer contract plans with mostly or fully non-

overlapping CE peaks (such as in case with plans 

A through D per example of Tbl. 1). This enables 

increasing the service provider’s operating cash 

flows generated or supported by a system per Fig. 

1 of certain cost level. Also, compared to a given 

computing service provider’s revenue level, this 

method reduces the provider’s cost of revenue, 

allowing the provider to offer more competitive 

contract pricing, by passing on at least a portion 

of the savings to the customers (also referred to as 

users) running programs on the system per Fig. 1, 

thereby further increasing the customer’s utility of 

the computing service subscribed to (in terms of 

compute capacity received when needed, 

specifically, number of cores allocated and 

utilized for parallel program execution) per unit 
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cost of the service. Consequently, this technique 

for optimally combining user contracts with 

complementary CE time profiles on a given 

system per Fig. 1 allows the service provider 

operating the system per Fig. 1 to increase the 

competitiveness of its compute capacity service 

offering among the prospective customers in 

terms of performance and price. 

The presented pricing optimization and billing 

techniques, in particular when combined with 

dynamic parallel cloud computing techniques [1]-[3], 

thus are designed for maximizing the overall utility 

computing cost-efficiency, particularly for workflows 

requiring parallel execution for on-time processing 

throughput performance gain. 
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