
© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 1 of 10

Parallel Cloud Computing Billing Model For Maximizing
User’s Utility and Provider’s Cost-Efficiency

 Mark Sandstrom
ThroughPuter, Inc.

mark@throughputer.com

ABSTRACT

Presented cloud computing billing model is designed

for maximizing value-adding throughput of a multi-

user parallel computing platform across a set of users

of the platform. The model enables maximally

demand driven computing capacity allocation while

guaranteeing each user application its contract-based

assured minimum capacity access level whenever

actually demanded. The billing model thus facilitates

providing maximized application processing

throughput per unit cost across the set of user

applications dynamically sharing the platform.

Technically, for any given user contract, on any given

billing assessment period, the model determines a

level of the given contract's demand for capacity that

is met by the capacity allocated to it, and assess

billables for the contract based on such met demand

and the contract's assured access to the capacity, as

well as billing rates on individual billing assessment

periods for the met demand and the contract's assured

access for the capacity.

Categories and Subject Descriptors

C.2.4 [Cloud computing]

General Terms

Algorithms, Management, Performance, Design,

Economics, Experimentation, Security,

Standardization, Theory.

Keywords

Billing, throughput, optimization, cost-efficiency,

performance.

1. INTRODUCTION
Computing systems will increasingly be based on

large arrays of processing cores. Particularly in cloud

computing, the many-core processing hardware will

be shared among a number of software applications,

which often belong to different users, while also

individual software applications will increasingly be

executing on multiple processing cores in parallel. As

the processing loads and types of the applications for

a given computing platform will vary over time, the

particular set of application program processing tasks

running on the processing cores of a given parallel

computing platform will need to be dynamically

updated, potentially highly frequently, in order to

pursue optimized application program level as well as

system wide processing throughput. To cost-

efficiently enable such dynamic application task

switching on a parallel computing platform, novel

multi-user parallel computing architectures are needed

to support dynamically assigning optimal sets of

processing task instances for a given pool of parallel

processing cores, and efficiently connecting the

processing context of any given task instance to any

core of the system (based on which task instance is

assigned for execution at any core at any given time)

as well as to facilitate efficient communication among

the tasks of any given application program instance

running on the many-core processing system.

Moreover, innovations are needed regarding effective

pricing and billing of user contracts, to increase the

parallel computing cost-efficiency both for the users

and provider of the computing service. Particular

challenges to be solved include providing effective

compute capacity service unit pricing model and

billing techniques with appropriate incentives and

tools to optimally spread application processing loads

in time and space across the available parallel data

processing resources, in order to pursue maximization

of data processing throughput per unit cost for the

users as well as maximization of profitability for the

service provider.

2. CONTEXT

2.1 Manycore Processor Dynamically Allocated

among Multiple Parallel Programs

The cloud computing billing model to address the

above outlined innovation challenge is presented in

the following in the context of a parallel processing

system, referred to as a cloud processor, that is

dynamically shared among a number of application

programs, each of which has a variable number of

ready-to-execute instances.

In the assumed operating context, each of the

application program instances will typically further

have a variable number of ready-to-execute tasks.

However, in case of a multi-stage processing system,

where for any given application each task is hosted on

http://www.throughputer.com/
mailto:mark@throughputer.com

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 2 of 10

a different processing stage, we can limit our study of

the billing methods here to just one of the processing

stages. Thus in the following discussion there will be

just one task type per any of the applications at the

processing system instance under study (e.g. the cloud

processor per Fig. 1). In a system with multiple

pipelined and/or parallel processing stages, the total

billables for a given application will be the sum of its

billables across all the processing stages. A suitable

multi-stage parallel processing architecture to extend

the scope of the herein discussed techniques is

provided in [1].

A block diagram for such a cloud processor is shown

in Fig. 1 below.

core

core

core

core

core

core

. . .

.

.

.

Per each core:

active app-inst ID

Fabric network and memories

Per each (active) app-inst:

execution core ID

Management interface:

Per each app:

contract parameters, billables

input

port #1

input

port #0

input

port #X-1

.

.

.

output

port #0

.

.

.

output

port #1

output

port #X-1

From each app: processing core

capacity demand expressions,

task/instance priority lists

Controller (FIG. 2), including billing subsystem

Core array

Receive logic

(monitor app

processing

loads;

connect input

data units to

cores based on

which app-

inst is running

at any core at

any given time)

Processing

core fabric

Figure 1. Cloud processor system architecture.

The dynamic management of the parallel processing

resources (core slots in the core array) at a cloud

processor per Fig. 1 is done by its controller, which

(per Fig. 2) periodically allocates the cores among the

application programs sharing the manycore processor,

and assigns one of the processing core slots for each

application instance selected execution on a given

core allocation period. The core allocation period

(CAP), e.g. 1 microsecond (can be even shorter if

desired when the controller is implemented by

hardware logic), is used as the elementary billing

counter time tick for the billing assessment periods

(BAPs) for the application programs sharing the given

cloud processor.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 3 of 10

Controller performing the periodic process

of assigning app-inst:s to cores

Allocate core

slots among

applications

Core

demand

figures

(CDFs)

from

applications

Core fabric, including IO, memory access and core-slot reconfiguration subsystems

Ready-inst priority ordered

lists from applications,

along with the core types

demanded by each app-inst

For each application:

Map selected tasks

to core slots and

assign appropriate core

type for each slot

For each

core slot:

Active

application

task ID and

core type

For each

application:

Number of

cores

allocated

For each

application:

List of

selected

tasks, along

with their

demanded

core types

For each

application:

Select to-be-

executing

tasks

For each task:

Processing

core slot ID

Billing

counters

(FIG. 3)

Time tick

Management interface

From each application:
Billable

For each application:

Core entitlements (CEs)

Figure 2. Cloud processor controller, including the context for the billing subsystem.

Comprehensive technical references for a cloud

processor per the architecture diagrams in Figs. 1 and

2 are found in [1]-[3]. Taken together, the techniques

per [1]-[3], pursue maximizing the value-adding user

application processing throughput across all the

applications sharing the given pool of parallel

processing resources based on the realtime processing

load demand variations of the individual applications,

while providing for each application assured access to

its contract based share of the processing capacity

whenever actually demanded. Among the novel

aspects of such cloud processors, of particular

relevance to the billing functionality is the algorithm

(see the leftmost box in the controller module of Fig.

2 for context) for periodically optimizing the

allocation of the given pool of processing cores

among the set of applications sharing such a pool.

2.2 Core Allocation Algorithm
Objectives for the core allocation algorithm include

maximizing the processor core utilization (i.e.,

generally minimizing, and so long as there are ready

app-insts, eliminating, core idling), while ensuring

that each user application program (app) gets at least

up to its entitled (e.g. a contract based minimum)

share of the processor core capacity whenever it has

processing load to utilize such amount of cores. Each

app sharing a given manycore processor (Fig. 3) is

specified its entitled quota of the cores, at least up to

which number of cores it is to be allocated whenever

it is able to execute on such number of cores in

parallel. Naturally, the sum of the apps' core

entitlements (CEs) is not to exceed the total number

of core slots in the given processor. Each app on the

processor gets from each run of the core allocation

algorithm:

(1) at least the lesser of its (a) core entitlement (CE)

and (b) core demand figure (CDF) worth of the

cores; plus

(2) after condition (1) is met for all apps sharing the

processor, as many additional cores to match its

CDF as is possible while maintaining fairness

among apps whose CDF is not fully met; plus

(3) the app's fair share of any cores remaining

unallocated after conditions (1) and (2) are met

for all the apps.

This algorithm allocating the cores to apps runs as

follows:

(i) First, any CDFs by all apps up to their CE of the

cores within the array are met. E.g., if a given app

#P had its CDF worth zero cores and entitlement

for four cores, it will be allocated zero cores by

this step (i). As another example, if a given app #Q

had its CDF worth five cores and entitlement for

one core, it will be allocated one core by this stage

of the algorithm. However, to ensure that each

app-task will be able at least to communicate at

some defined minimum frequency, the step (i) of

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 4 of 10

the algorithm allocates for each app, regardless of

the CDFs, at least one core once in a specified

number (e.g. sixteen) of the core allocation

periods.

(ii) Following step (i), any processing cores remaining

unallocated are allocated, one core per app at a

time, among the apps whose CDF had not been

met by the amounts of cores so far allocated to

them by preceding iterations of this step (ii) within

the given run of the algorithm. For instance, if

after step (i) there remained eight unallocated

cores and the sum of unmet portions of the app

CDFs was six cores, the app #Q, based on the

results of step (i) per above, will be allocated four

more cores by this step (ii) to match its CDF.

(iii) Following step (ii), any processing cores still

remaining unallocated are allocated among the

apps evenly, one core per app at time, until all the

cores of the array are allocated among the set of

apps. Continuing the example case from steps (i)

and (ii) above, this step (iii) will allocate the

remaining two cores to certain two of the apps

(one for each). Apps with zero existing allocated

cores, e.g. app #P from step (i), are prioritized in

allocating the remaining cores by this step (iii).

Moreover, the iterations of steps (ii) and (iii) per

above are started from a revolving app ID# within the

set, so that the app ID# to be served first by these

iterations is incremented by one (and returning to 0

after reaching the highest app ID#) for each

successive run of the algorithm.

Accordingly, all cores of the array are allocated on

each run of the above algorithm according to apps’

processing load variations while honoring their

contractual entitlements. I.e., the allocating of the

array of cores by the algorithm is done in order to

minimize the greatest amount of unmet demands for

cores (i.e. greatest difference between the CDF and

allocated number of cores for any given app) among

the set of apps, while ensuring that any given app gets

its CDF at least within its CE met on each successive

run of the algorithm.

The remaining elements of the cloud processor

architecture per Fig. 1, including its controller process

per Fig. 3, are described more comprehensively in [1]-

[3]. In summary, the cloud processor hardware

provides, besides the processing cores, and the

dynamic core allocation per above, the functionalities

of monitoring applications’ processing loads and their

contractual core capacity entitlements, prioritizing and

selecting application task instances for execution,

mapping selected task instances for processing on

their assigned cores and accordingly dynamically

configuring the memory and IO access subsystems

(and on programmable hardware, the core slot types),

and arranging the inter-task communications. While

all these hardware-automated functionalities are

essential to enable the dynamic parallel program

execution, only the core allocation algorithm per

above impacts the billing functionality which is the

focus of this paper.

2.3 Billing System

2.3.1 Overview

The presented billing techniques are designed for

maximizing the value-add of the application

processing throughput of a multi-user parallel

computing platform across a set of users of the service

provided with the platform. These billing techniques,

for any given user contract among the contracts

supported by the platform, and on any given billing

assessment period, determine a level of a demand for

the capacity of the platform associated with the given

contract that is met by a level of access to the capacity

of the platform allocated to the given contract, and

assess billables for the given contract based on 1)

such met demand and 2) a level of assured access to

the capacity of the platform associated with the given

contract, as well as 3) billing rates, applicable for the

given billing assessment period, for (a) the met

demand and (b) the level of assured access associated

with the given contract.

A logic block diagram billing subsystem for the cloud

processor per Figs. 1 and 2 is presented in Fig. 3

below.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 5 of 10

CE

Billables (B)

Number of

cores

allocated

Core

entitlement

(CE) based

billing counter

Core allocation

period boundary

time tick

CE billing rate x DBCA billing rate y

Demand based

core allocation

(DBCA)

based billing

counter

Adder

Management

interface

CE based

billable-

component

DBCA

based

billable-

component

Core

demand

figure

(CDF)

Figure 3. Billing subsystem of the cloud processor controller.

2.3.2 Objectives

The presented cloud processor billing techniques

target maximizing: i) the on-time data processing

throughput per unit cost for the users of a given

processing system per Fig. 1, and ii) the revenue over

a period of time for the service provider operating

such a system of a certain total cost. Accordingly,

these techniques have the following objectives:

1) Maximizing, at given billing rates for demand-

based core allocations (DBCAs) for a billing

assessment period (BAP), the total volume of

demand-based core allocations for the programs

configured for a given system per Fig. 1. Herein,

DBCA refers to an amount of cores allocated to a

program to meet that program’s core demand

figures (CDF) on the given BAP (i.e., any cores

allocated for a program beyond the CDF of the

program are not counted as demand based core

allocations). DBCA for a given program on a

given core allocation period (CAP) is taken as the

lesser of the CDF and allocated core count of the

program.

2) Maximizing, at given billing rates for core

entitlements (CEs), the number of core

entitlements sold for user contracts supported by a

given system per Fig. 1. CE herein refers to the

number of cores up to which amount of cores of

the shared array a given user program is assured

to get its (CDFs) met by core allocations on

successive runs of the algorithm.

These objectives reflect the utility for the users

running their programs on a system per Fig. 1; the

users are assumed to perceive value in, and be willing

to pay for, assured access to their desired level of

capacity of a given compute system and their actual

usage of the platform capacity. Accordingly, the

above objectives 1) and 2) are among principal factors

driving the revenue for the operator of the given

system per Fig. 1.

2.3.3 Billing Formula

Per Fig. 3, the billables (B) for the operator of the

system from a given user contract is per the following

equation: B = x*CE + y*DBCA (Equation 1), wherein

CE stands for core entitlement for the user, DBCA

stands for the amount of core allocations to that user’s

program to meet its CDFs for the Core Allocation

Periods (CAPs, e.g. 1 microsecond each) during the

contract time period in question, and x and y are

billing rates per the contract that convert CE and

DBCA into monetary figures.

An advantage of this billing method is that a portion

(i.e. the term y*DBCA) of the cost of the utility

computing service for a user running its program on a

system per Fig. 1 is based on the CDFs of the user’s

program (to the degree that CDFs are met by core

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 6 of 10

allocations). Therefore, each user of the system per

Fig. 1 has an economic incentive to configure its

programs so that they eliminate any CDFs beyond the

number of cores that the given program is actually

able to utilize at the given time. If so allowed for a

given user contract, the system will generate the

CDFs for the user automatically based on the input

data load levels for the user program instances.

Whether the CDFs are generated by a user programs

or the system on their behalf, the users have the

incentive to not automatically (cause a) demand (for)

at least their CE worth of cores irrespective of on how

many cores the given program is able to execute on in

parallel at any given time. This incentive leads to

increasing the average amount of surplus cores for

runs of the core allocation algorithm i.e. cores that can

be allocated in a fully demand driven manner (rather

than in a manner to just meet the CDFs by each

application for their CE figure worth of cores). Such

maximally demand driven core allocation (which

nevertheless allows guaranteeing each user

application an assured, contract defined minimum

capacity access level whenever actually demanded)

facilitates providing maximized value-adding

processing throughput per normalized cost across the

set of user applications dynamically sharing the

system per Fig. 1.

Moreover, either or both of the billing rates x and y

for Equation 1 can be specified in the user contract to

vary over time. The term x*CE can take a form of a

sum such as x1*CE1 + x2*CE2, wherein, for

example, x1 is the billing rate for a core entitlement

during specified premium businesses hours (e.g.

Monday-Friday 9am - 5pm at the local time zone of

the given platform or user) and x2 the billing rate for

a core entitlement outside the premium business

hours, while CE1 and CE2 are core entitlements for

the given user contract for the premium and non-

premium hours, respectively. Naturally, there can be

more than just two time phases with their respective

billing rates. For instance, in addition to premium

pricing during the business hours, also evening hours

5 pm - 1 am could have a different billing rate than

1am - 9am, and so forth, depending on the popularity

of the compute capacity usage during any given hours

of the day. Similarly, different days of the week,

special calendar days etc. can have different billing

rates, based on expected popularity of compute

capacity on such days. Naturally, this discussion

applies also the for the coefficient y of the term

y*DBCA in Equation 1.

Per Fig. 3 (see also context from Figs. 1 and 2),

digital hardware logic within the controller module

functions as a billing counter for the contracts

supported by a given system per Fig. 1. In the logic

implementation for the billing subsystem functionality

discussed herein, in addition to the billing rate values,

the signals x and y, provide notifications of transitions

of contract time phases at which the CE and DBCA

billing rates (x and y) get new values. In such a logic

implementation, DBCA based billing counter counts

an average number of cores allocated to a given user

program over the core allocation periods (CAPs)

during a given billing assessment period (BAP) (i.e.

time between two successive changes of the rate y, or

the maximum BAP duration configured for the

system), and multiplies this average DBCA amount

with a total DBCA billing rate per core applicable for

that BAP. Similarly, the CE based billing counter

counts the average CE level for the given program (or

simply takes any constant CE level for the time phase

in question) for a given BAP for which the CE billing

rate remains a constant, and multiplies that average

(or simply constant) CE level with a total CE billing

rate applicable for that BAP. At user billing intervals,

the adder accumulates the series of billable

components, so produced for such BAPs of constant

billing rates to form the billables for the given

program. For context, the typical CAPs consist of tens

to thousands of processing logic clock cycles, thus

lasting for microseconds or less, while the BAPs, at

boundaries of which the billing rates change, may last

from minutes to hours, comprising several millions to

billions of CAPs. Finally, the user contract billing

periods are typically calendar months, thus typically

comprising tens to hundreds BAPs.

2.3.4 Usage Scenarios

The compute capacity provider operating a platform

based on system(s) per Fig. 1 can offer different types

of CE time profiles for different application types. For

instance, a service provider operating the platform

could sell four basic contract types with differing CE

time profiles per examples of contract plans A, B, C

and D in Tbl. 1 below:

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 7 of 10

 Plan A B C D

Contract
type:

enterprise
entertainmen

t
batch always on

Sum of CEs = cores
needed for the

below contract mix

Number of
contracts 1 3 1 2

CEs - time
profiled:

- business
hours 8 2 0 1 16

- evening

hours 1 4 0 1 15

- night

hours 0 2 8 1 16

Max during
24h: 16

CEs - flat: - any hour 8 4 8 1 30

Cost-efficiency gain of
time profiled CEs vs.

flat CEs:
(30-16)/16 = 87.5%

Table 1.

As illustrated in Tbl. 1, the capability to allow

configuring compute capacity contracts with differing

CE time profiles, particularly contract types with non-

overlapping CE peaks on a given platform per Fig. 1,

can be used both for improving the computing cost-

efficiency for the users of the compute service

provided through the platform as well as increasing

the revenues that the compute capacity service

provider is able to achieve with the platform of a

certain cost of ownership. Either or both of the CE

and DBCA billing rates can be set for different values

on the different billing assessment periods (BAPs)

within day, week, month, etc., in order to optimally

even out the user program’s collective processing load

for a given system per Fig. 1 over time, and thereby,

maximize the cost efficiency for the users of the

computing service provided with the given platform

and/or the revenue generation rate for the service

provider operating the platform. For instance, in an

example scenario, the CE billing rate on business days

could be $0.08 per a core for the BAP of the business

hours, $0.04 for the BAP of the evening hours, and

$0.01 for the BAP of night hours, while DBCA billing

rate, per the average number of demand based cores

allocated to a given program over the eight hours of

these daily BAPs, could be $0.04 for the business,

$0.02 for evening, and $0.01 for night BAPs. These

daily BAP billing rates can naturally be set to any

other values as well, and can have differing values on

different calendar days, as well as different week days

(e.g. Monday-Friday versus Saturday-Sunday) can

have non-uniform BAP phasing (e.g. Saturday-

Sunday could replace the business hour BAP of

Monday-Friday with ‘extended’ evening hour BAP),

etc.

With the example values of Tbl. 1 for a mix (or

‘basket’) of enterprise, entertainment (including news

etc.), batch job (overnight block data processing), and

always-on type of applications, it can be seen that the

capability to configure applications for a given

platform per Fig. 1 with different CE time profiles

enables the service provider operating the platform to

support a given set of applications, with their

collective CE requirements, with a significantly

reduced system processing core capacity requirement,

i.e., with a lower cost base for the revenues generated

by the given set of user applications. With the

numerical example shown in Tbl. 1, this system core

utilization efficiency gain with time-profiled contract

CEs compared to flat CEs enables a reduction from 30

to 16 cores needed for the provided mix of user

contracts. In turn, this compute resource utilization

efficiency gain through time profiled CEs reduces the

cost of revenue for the utility computing service

provider by an accordant factor. Put differently, the

service provider’s revenue per unit cost of the service

provided (driven by the number of cores needed to

support a given set of contracts) is multiplied

accordingly.

Note that in discussion herein regarding the example

of Tbl. 1, also the flat CE reference, against which the

cost-efficiency of the time profiled CE contracts are

compared, is assumed to be implemented on a system

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 8 of 10

per Fig. 1 that supports the application load adaptive

core allocation per Ch. 2.2 etc. dynamic parallel

execution techniques per [1]-[3]. Since the described

dynamic compute resource allocation with contract

specified minimum system access level guarantees (to

be met when so demanded) is not supported by

conventional computing systems, the contracts

supported with a platform per Fig. 1, i.e. contracts

with the capability to burst to up to the full system

core capacity while having a contract defined

minimum assured level of access to the shared system

capacity, provide a higher market value than

conventional contract types, which provide either only

a dedicated capacity share (but without a capability to

dynamically, without user or platform operator

involvement, burst beyond the dedicated cores) or a

capability to burst (but without a contract defined

minimum core count based access level that the user

contract is guaranteed to get whenever needed).

Moreover, regarding Tbl. 1, please also note that CE

level of 0 does not imply that such contract type

would not allow the application under that contract to

execute on its host system per Fig. 1 during the hours

in question; instead, CE of 0 indicates that, while the

application is not guaranteed to have its CDFs met for

up to any specified minimum core count, it will still in

practice get its demand based fair of share of the cores

allocated to it after the CDFs of set of the applications

up to their CE levels have been met (per Ch. 2.2). In

fact, at times when there are no other user application

expressing a positive CDF at a given system per Fig.

1, the application with CE of 0 will get its CDFs met

all the way to the total core count of the array.

The 24 hour cycle for the CE time profiles per

example of Tbl. 1 here is merely to illustrate the

capability to facilitate efficient combining of

applications with differing demand time profiles for

compute capacity into a shared compute capacity

pool. In various implementation scenarios, there can

be, for instance, further variants of plans within the

basic contract types (e.g. plans A through D per Tbl.

1) such that offer greater CE levels than the norm for

the given base plan (e.g. plan A) at specified seasons

or calendar dates of the year (either during the peak

hours of the profile or throughout given 24 hour days)

in exchange of lower CE levels than the norm for that

base plan at other dates or seasons. Besides

combining contracts with differing CE profiles within

24h cycles as illustrated in Tbl. 1 to dynamically

share the same capacity pools, the system also

facilitates combining the seasonally differing variants

of contracts within a given plan type (i.e. variants

with non-coinciding seasonal peaks in their CE

profiles) in the same capacity pools for further

capacity utilization efficiency gains, in addition to the

8-hour phases shown in Tbl. 1. Moreover, there can

be variants of contract types within a given base plan

that have finer time granularity in their CE profiles.

For instance, among the contracts of type B, there can

be a variant that offers greater than the standard CE

level of the plan type for the night hours (e.g. 1am -

9am) at specific timeslots (e.g. for a news casts at for

15 minutes at 6am, 7am, 8am) in exchange of lower

CE at other times during the night hours. The system

facilitates efficiently combining these type of variants

of contracts within a given base type with

complementary peaks and valleys in their CE profiles

also within a given (8 hour) phase of the 24h cycle.

As well, this type of combining of complementary

variants (either seasonally, within 24h cycles, etc.) of

a given contract type can take place within the

aggregate CE subpool of the contracts of the given

base type. In the example shown in Tbl. 1, this type of

intra contract type combining of complementary

variants can thus take place e.g. among the three

contracts of type B, whose aggregate CE level is, for

instance, during the night hours worth 3*2 = 6 cores

for each CAP. At systems per Fig. 1 with greater

number of cores, there will normally be a greater

number of applications of any given type sharing the

systems (and a greater subpool of CEs for each

contract type) than what is shown in the simple

illustration example of Tbl. 1.

2.3.5 Hardware Implementation for High

Resolution and Overhead Elimination

The direct hardware logic implementation of the user

application billing counters per Fig. 3, including the

hardware logic based subcounter for computing the

CE based billables components for each given

application on the successive CAPs and BAPs,

enables supporting (in practical terms) infinitely fine

granularity of CE time profiling for the contract types

and their variants. Moreover, the capability to

customize the contract and variant CE time profiles

per their application specific demands for processing

capacity, with the hardware logic based (down to

clock cycle) fine granularity, determinism, accuracy

and efficiency, enables the computing service

provider operating a system per Fig. 1 to profitably

sell highly competitively priced compute capacity

service contracts, with the offered customizable CE

time profiles accurately matching the processing

capacity demands of any given application type. With

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 9 of 10

these capabilities of the system, the users with less

time sensitive programs, for instance among the

programs within a given base plan, have an incentive

to shift their processing loads (at least in term of their

core entitlements) to less busy times, to make room

for CE peaks at more popular times for the

applications than can afford the more pricier CEs at

such times of high aggregate demand for CEs

(specifically, high aggregate demand that would exist

if the CE pricing adjustment techniques were not

used). These system software overhead eliminating,

fine granularity hardware logic based pricing

adjustment, billables assessment and efficient

compute platform sharing techniques per above

facilitate both maximizing the users’ net value of the

compute service being subscribed to as well as the

service provider’s profitability.

3. CONCLUSIONS
The presented dynamic parallel cloud computing

billing model enables combining the desired aspects

of per-user dedicated and multi-user shared capacity

based computing services. Each user is guaranteed its

access to its contract-specified level of the processing

capacity whenever actually demanded. However, the

contract specified capacity entitlements are neither

kept locked down to their associated programs (at

times when the processing load associated with a

given user program does not demand its entitlement

worth of processing core capacity) nor are they any

limits for maximum capacity available for their user

programs (at times when the processing load of a

given user program exceeds its entitlement worth of

core capacity). In fact, the incentives that the billing

model provides for the user programs to economize

on their core capacity demand expressions (i.e. to only

demand as much capacity as their current processing

load demands, rather than at least their capacity

entitlement worth of processing cores regardless of

the actual processing load) lead to maximization of

the portion of the system processing capacity

available for realtime application processing load

variation based capacity allocation, to match the

processing capacity demand peaks of the user

programs (beyond their capacity entitlement levels).

Accordingly, the presented billing techniques for

parallel processing system capacity utilization and

application processing performance (per normalized

cost) optimization described in the foregoing provide

the following fundamental advantages:

 Increased user’s utility, measured as demanded-

and-allocated cores per unit cost, as well as, in

most cases, allocated cores per unit cost. Note

that, compared to a case where the users would

purely pay for their core entitlements (CEs), and

as such have no direct incentive to ever demand

less than their CE worth of cores, the billing

method wherein a portion of the billables per a

user is based on the user’s demand-based-core-

allocations (DBCAs) (Eq. 1; Fig. 3) during the

billing assessment period, incentivizes the users to

economize on their core demand figures (CDFs)

(e.g. not demand their CE worth of cores unless

the given user application is able to effectively

utilize at the time such number of cores). In turn,

this leads to there on average being more cores,

per unit cost for a system per Fig. 1, to be

allocated to meet CDFs above any given user’s

CE, when the given user’s program is actually

able to benefit from such bursting. Note also that

cores allocated beyond the CDF of the user’s

application do not cost the user anything, while a

users’ program can gain performance benefit from

receiving a greater than number of cores allocated

to it than it demanded. Thus the described billing

techniques (together with the dynamic parallel

execution techniques per [1]-[3]) maximize the

amount of utilizable parallel execution core

capacity received by each given user application

on systems per Fig. 1 per unit of cost of the

computing service provided through such

platform.

 Increased revenue generating capability for the

service provider from CE based billables, per unit

cost for a system per Fig. 1, through the ability to

offer contract plans with mostly or fully non-

overlapping CE peaks (such as in case with plans

A through D per example of Tbl. 1). This enables

increasing the service provider’s operating cash

flows generated or supported by a system per Fig.

1 of certain cost level. Also, compared to a given

computing service provider’s revenue level, this

method reduces the provider’s cost of revenue,

allowing the provider to offer more competitive

contract pricing, by passing on at least a portion

of the savings to the customers (also referred to as

users) running programs on the system per Fig. 1,

thereby further increasing the customer’s utility of

the computing service subscribed to (in terms of

compute capacity received when needed,

specifically, number of cores allocated and

utilized for parallel program execution) per unit

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 10 of 10

cost of the service. Consequently, this technique

for optimally combining user contracts with

complementary CE time profiles on a given

system per Fig. 1 allows the service provider

operating the system per Fig. 1 to increase the

competitiveness of its compute capacity service

offering among the prospective customers in

terms of performance and price.

The presented pricing optimization and billing

techniques, in particular when combined with

dynamic parallel cloud computing techniques [1]-[3],

thus are designed for maximizing the overall utility

computing cost-efficiency, particularly for workflows

requiring parallel execution for on-time processing

throughput performance gain.

4. REFERENCES
[1] Sandstrom, M. 2013. US patent application

#13959596. Program Execution Optimization for

Multi-stage Manycore Processors.

[2] Sandstrom, M. 2012. US patent application

#13717649. Application Load and Type Adaptive

Manycore Processor Architecture.

[3] Sandstrom, M. 2014. US patent application

#14318512. Concurrent Program Execution

Optimization.

http://www.throughputer.com/

